

Expanding Boundaries in
Scalable Session-Based
Recommendations

Barrie Kersbergen

Expanding Boundaries in
Scalable Session-Based
Recommendations

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. PP.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in
de Agnietenkapel
op maandag 7 juli 2025, te 17:00 uur

door
Barrie Kersbergen

geboren te Gorinchem

Promotiecommissie

Promotores: prof. dr. M. de Rijke =~ Universiteit van Amsterdam
prof. dr. S. Schelter ~ Technische Universitit Berlin

Overige leden: prof. dr. PT. Groth Universiteit van Amsterdam
dr. H. Harmouch Universiteit van Amsterdam
dr. R.M. Jagerman Google
prof. dr. D. Jannach ~ University of Klagenfurt
prof. dr. E. Kanoulas Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This research was supported by and carried out at Bol and (partially) funded by Ahold
Delhaize, through AIRLab.

Copyright © 2025 Barrie Kersbergen, Amsterdam, The Netherlands
Cover by Franka Kersbergen
Printed by Ridderprint, Alblasserdam

ISBN: 978-94-6522-114-4

Acknowledgements

You are holding my thesis, the results of a journey that has shaped me in many ways.
This adventure has not only sparked innovation in my work at Bol but also enriched my
academic skills — something I am incredibly thankful for. This research is the product
of a collective effort, and I would like to take a moment to express my gratitude to
everyone who played a role in making my PhD research a reality. None of this would
have been possible without the support, insight and encouragement of many people and
organizations.

First and foremost I want to express my heartfelt gratitude to my supervisors
Maarten de Rijke and Sebastian Schelter, for their unwavering support throughout my
PhD journey. Their expertise, exceptional guidance and contagious enthusiasm have
been invaluable. Together, they created the perfect environment and opportunities for
me to grow and thrive as a researcher, for which I am deeply grateful.

Maarten, your dedicated support made it possible for me to embark on this PhD
journey as an external candidate. Your dedication, combined with a touch of humor,
has been a true gift — one I will carry with me throughout my career. Sebastian, you
were both a critical friend and a mentor, always challenging my ideas and providing
thoughtful, multifaceted feedback. Your guidance was instrumental in raising the quality
of my research to new heights. Thank you both so very much.

During my PhD research I had the unique opportunity to act as a broker between
Ahold, specifically Bol, and the University of Amsterdam (UvA), represented by the In-
stitute for Informatics. These organizations established a groundbreaking collaboration
known as the A.IL. in RetailLab (AIRLab), which is part of the Innovation Center for
Atrtificial Intelligence (ICAI). I feel truly privileged to have been part of this venture.
Bridging boundaries between different working environments unlocked new possibili-
ties for collaboration, learning, and growth. In this way, the title of this thesis not only
reflects the expansion of boundaries in recommendation systems, but also symbolizes
the broader learning and development fostered within the AIRLab, which was central to
my PhD research.

From Bol’s perspective, I express my gratitude to Frans Muller from Ahold Delhaize
as well as the directors and management team at Bol: Dagmara, Dennis, Erick, Ernst,
Joris, Jurrie, Marcel, Mirko, Niels, Pim, Sven and Leon. Your dedication to stimulate
innovation and bridging the gap between academia and industry has been both inspiring
and key to the success of this research. Experimentation thrives on strong engineering
and robust infrastructure, and I am deeply thankful to team RECO for their invaluable
support. A special thanks goes out to An, Binyam, Bruno, Cuong, Danu, Gabor, Giles,
Jelle, Joep, Karoliina, Marieke, Nian, Paola, Paulo, Sam, Sander and Sandra — your
contributions have been essential and greatly appreciated.

From the perspective of the UvA, I would like to express my sincere gratitude to the
directors and managers at the AIRLab: Bart, Evangelos, Maarten, and Sebastian. Your
leadership, vision, and dedication to pushing the boundaries of cutting-edge research
have been truly invaluable. Your commitment to fostering a vibrant and collaborative
environment has greatly enriched my PhD journey and strengthened the impactful
synergy between academia and industry. And of course, I would like to express my
appreciation to all my colleagues at the AIRLab, the Information Retrieval Lab (IRLab)

iii

0. Acknowledgements

and the DEEM lab from the Technische Universitéit Berlin. Thank you for making the
labs such inspiring and enjoyable places to work. The thought-provoking discussions
and collaborative energy have been a source of motivation and growth throughout this
journey. I would also like to express my sincere gratitude to the co-authors of my
work: Bojan, Frank, Olivier and Shubha. Your collaboration, valuable insights, and
contributions have been instrumental in building our research. A shout-out thanks
to Olivier, who co-authored three of my papers, thank you for your dedication and
partnership. Lastly, thanks to the IRLab secretary for your support and for ensuring
everything ran smoothly, allowing me to focus fully on my research. Working with all
of you has been an enriching and rewarding experience, and I deeply appreciate the
time and effort you invested in our work.

Paul Groth, Hazar Harmouch, Rolf Jagerman, Dietmar Jannach and Evangelos
Kanoulas, it is a true honor to have you on my PhD committee. Thank you for your
time to review my thesis. I deeply appreciate your involvement.

Lastly, I thank the people I hold closest to my heart — my family and friends — for
their support and genuine interest in my work. Many thanks to Nicola and Frédéric,
Machiel and Mariélle, and especially to An, whose love, encouragement, and the
countless joyful moments we continue to share have meant so much.

To Marjolijn, thank you for being my rock and always being there for me. Your love
and support mean everything to me. You have an incredible ability to turn challenges
into opportunities, making life brighter for everyone around you. I am endlessly grateful
for your strength and vision — you are the steady force that keeps our family moving
forward.

To my children, being part of your lives and watching you grow has been a constant
source of inspiration, making this thesis even more meaningful. Franka, your sharp mind
and effortless grace, combined with your good sense of humor and lighthearted touch,
brighten the world. Your painted cover image adds a truly special element to this thesis.
Walt, your boundless curiosity and excitement for learning and technology inspire me
and everyone around you. Your warmth and sweetness light up every conversation.

This thesis is dedicated to my father-in-law whose appreciation of my achievements
was something I deeply valued and will always remember. His kindness, generosity,
and his remarkable ability for bringing people together has left a lasting impression on
all of us. This work stands as a tribute to his memory and legacy. Thank you, dear Jos.

Barrie
Utrecht, December 2024

v

Contents

Acknowledgements ii
1 Introduction 1
1.1 Research Outline and Questions 3
1.2 Main Contributions oo 5
1.3 ThesisOverview e 7
L4 Origins o e 7
2 Learnings from a Retail Recommendation System 11
2.1 Introduction e e 11
22 RelatedWork 12
2.3 System Architecture L. oo 13
231 Overview 13
2.3.2 Recommendation Approach 14
2.3.3 Distributed Model Training 15
234 OnlineServing 16
2.4 Neural Networks versus Nearest Neighbor Methods 16
24.1 Data& Algorithms 17
2.5 The Impact of Serving Latency 19
2.5.1 Experimental Evaluation 20
2.6 Learnings & Future Work 21

3 Serenade — Low-Latency Session-Based Recommendation in e-Commerce
at Scale 23
3.1 Introduction 23
32 RelatedWork 25
3.3 Background 26
3.4 Vector-Multiplication-Indexed-Session-kNN (VMIS-kKNN) 27
35 Serenade 30
3.5.1 Design Considerations 30
3,52 Implementation 31
3.6 Experimental Evaluation 33
36.1 VMIS-KNN 34
362 Serenade oo 36
3.7 Learnings & Conclusion 41
4 Evaluating the Inference Latency of Session-Based Recommendation 43
4.1 Introduction 44
4.2 The Etude Benchmarking Framework 46
4.3 Experimental Study oL oL 49
4.3.1 Validation of Design Choices 50
43.2 Micro-Benchmark, 51
433 End-to-End Benchmark 52
44 Conclusion e 54

Contents

5 Scalable Debugging of Recommendation Data in e-Commerce 57
5.1 Introduction 58
5.2 RelatedWork 60
5.3 Background 61
5.3.1 Datalmportance 61
5.3.2 Sequential Recommendation 61
54 ILLOOMINATEt ittt ittt ittt et e e e e 63
5.5 KMC-Shapleyo 64
5.5.1 Scalability Issues 64
5.5.2 Data and Model Characteristicsin KNN-SR 66
5.5.3 KMC-Shapley Algorithm 67
5.6 Evaluation o 69
5.6.1 Efficiency 69
5.6.2 Scalability 71
5.6.3 Impactof DataRemoval 72
5.7 Applications e e e e e e 73
5.7.1 Identifying Outliers and Corrupted Data 74

5.7.2 Increasing the Sustainability of Recommendations via Data
Pruning oo 75
5.7.3 High-Value Data and High-Level Insights 77
5.7.4 Transferability to Neural SR Methods 78
5.8 Conclusion 78
5.9 Appendix ... e 79
5.9.1 Recommendation Algorithms 79
5.9.2 Efficient LOO Computation 81
6 Conclusion 83
6.1 Summaryof Findings 83
6.2 FutureWork L 85
Bibliography 87
Summary 95
Samenvatting 97

vi

Introduction

Imagine that you own a massive online store with millions of products. A customer visits
your website, and now you have to decide: What items are you going to show them? The
goal is not only to guess what the customer might like, but also to show the right items
at the right time, without overwhelming or boring your customer. For this challenge,
recommendation systems have been developed [98] and play a vital role in helping
users discover relevant items across various domains, including e-commerce [130],
media [17], and social platforms [69]. Traditional recommendation approaches, such as
trending products or category-based suggestions, often struggle to meet user needs in
large catalogs. These approaches overwhelm users and miss individual preferences [74],
highlighting the need for more personalized approaches using machine learning.

Although significant progress has been made in personalizing user experiences [42],
challenges remain, particularly in scaling recommendations to massive product cat-
alogs and user bases [30, 69, 130]. Many algorithm designers lack access to real-
world systems and are limited to working with only small or moderately sized public
datasets [25, 42]. Large industry deployments offer the unique opportunity to evaluate
recommendation techniques on real users via A/B testing, a critical method for evalu-
ating recommendation systems in real-world settings [20] to which most researchers
do not have access. For these A/B tests to provide meaningful insights, it is essential
that models can scale up to production setups like the large European e-commerce
platform Bol, which requires handling billions of interactions. Achieving this level of
scalability allows models to be tested under realistic conditions, where they must oper-
ate at reasonable training costs and within strict response times in the low millisecond
range. Without this scalability, it remains unclear how effectively strong performance
on small experimentation data will translate to performance in real-world production
environments.

An important task within recommendation systems is Session-Based Recommen-
dation (SBR), where these issues become especially critical. SBR systems are de-
signed to predict the next item a user might interact with based solely on their actions
during an individual session, a short, anonymous sequence of interactions on the
site [25, 67, 93, 123, 125]. This type of recommendations is essential for settings where
user preferences change quickly, and little historical data is available.

Modern e-commerce platforms, which feature millions of products and serve mil-
lions of users, rely heavily on recommendation systems to guide customers to relevant

1. Introduction

items. However, the effectiveness of these systems is closely tied to the quality of the
data on which they are trained. Data errors, such as the accidental recommendation
of dangerous items [14] or issues arising from low-quality metadata [7], can severely
degrade the recommendation performance. These errors are often unpredictable and
typically only identified after they have negatively impacted the user experience. To
mitigate these issues, data debugging techniques are essential. Recent advancements in
data importance methods [32] aim to systematically highlight problematic data points,
enabling more efficient identification and resolution of errors before they affect users.
Unfortunately, given the massive scale of e-commerce datasets, the process of identi-
fying the data errors that have the most significant negative impact, also called data
debugging, can be prohibitively expensive.

Building scalable session-based recommendation systems poses unique challenges.
First, precomputing recommendations for every possible combination of interactions is
infeasible due to the sheer number of potential user sessions. Instead, predictions must
be generated dynamically as users interact with the e-commerce platform. This requires
high-performance systems that can efficiently process and respond to a large numbers
of concurrent requests. Furthermore, these systems must adhere to strict service level
agreements (SLAs), which define rigorous requirements for latency and specify the
minimum throughput, measured in predictions per second, that the recommendation
system must sustain. These SLAs are in place to prevent backpressure, resource bottle-
necks, and delays that can propagate throughout the e-commerce platform, negatively
affecting performance and user experience. Failing to meet the SLA will result in a
failure to provide recommendations to users. Furthermore, such systems handle millions
of sessions each day, yet each individual session involves only a small fraction of the
product catalog, resulting in highly sparse data [76]. This presents a challenge in making
accurate predictions with limited interaction data, yet it is essential for maintaining a
high-quality user experience [67, 110].

In this thesis, we focus on expanding the boundaries of scalable session-based recom-
mendation systems by addressing the challenges posed by large product catalogs, large-
and sparse interaction data in e-commerce. Our work bridges the gap between academic
research, which often lacks access to the scale required for real-world evaluation, and
industry practices, where large-scale A/B testing is essential for refining and validating
systems. We introduce novel methods that not only enhance the accuracy and the re-
sponse latency of recommendations but also scale seamlessly to the demands of modern
e-commerce platforms. We demonstrate that traditional nearest-neighbor approaches
can match or even surpass the predictive performance of more complex neural network
models on large-scale e-commerce datasets. Additionally, we explore the relationship
between response latency and higher adoption rates of recommendations. These find-
ings highlight the critical role of efficiency in recommendation systems and its strong
correlation with user acceptance. To address these challenges, we introduce an indexing
strategy that enables a state-of-the-art nearest neighbor method to efficiently manage
billions of clicks. Our recommendation system requires low computational power,
which is crucial for maintaining a low carbon footprint and promoting sustainability.
A large-scale test confirms that its strong offline performance translates effectively to
real-world environments, enhancing the acceptance of recommendations. Additionally,
we develop a framework for the automatic evaluation of inference performance in neural

2

1.1. Research Outline and Questions

network-based session-based recommendation models, specifically tailored to declara-
tively specified deployment options. We also introduce a novel method designed for
estimating Data Shapley Values for debugging click and purchase datasets containing
millions of interactions, which are essential for recommendation systems.

By addressing these critical challenges, we expand the boundaries of session-based
recommendation research, and provide solutions that are both theoretically sound and
practically viable in large-scale contexts.

1.1 Research Outline and Questions

This thesis focuses on improving session-based recommendation systems in real-world
e-commerce platforms by addressing challenges in predictive performance, response
latency, resource efficiency, cost-efficient deployment and data quality issues.

Conducted at Bol, a large European e-commerce platform, this research addresses
challenges posed by large product catalogs, billions of interactions and sparse data.
We specifically investigate how to leverage and adapt recommendation algorithms
within production constraints, aiming to balance computational demands with predictive
accuracy and operational scalability.

Given the complexities of SBR systems in e-commerce, we have formulated the
following research question:

RQ1 Which techniques can improve both the predictive performance and user accep-
tance of recommendations in large-scale SBR systems?

To address this question, we examine and compare neural and non-neural network
approaches for SBR using proprietary data from Bol. We replicate a key study [70],
where the algorithm called Vector-Session-kNN (VS-kNN) outperforms neural network-
based methods in session-based recommendation on e-commerce data. Furthermore,
we explore the impact of response latency on user acceptance through a large-scale
A/B test conducted during a data center migration. This multi-faceted approach allows
us to assess both predictive performance and user experience factors. To bridge the
gap between identifying high-performing algorithms and deploying them effectively
in production, we must address the challenges of scalability and responsiveness in a
real-world setting. This leads us to our second research question:

RQ2 How can we scale VS-kNN to efficiently handle billions of interactions while
maintaining low response times and adhering to production requirements in a
real-world SBR system?

To address this question, we explore the development of a scalable variant of the VS-
kNN algorithm that is designed to handle billions of interactions with millisecond re-
sponse times and high throughput in a real-world session-based recommendation (SBR)
system. This includes investigating the design and implementation of a production-
ready, stateful recommendation system that meets production requirements, supports
non-personalized recommendations for users without consent for personalization, and
ensures resource-efficient deployment at scale. Additionally, we evaluate the system’s

1. Introduction

performance through both offline experiments and a large-scale A/B test conducted on
Bol’s product detail page to assess its effectiveness in a real-world setting.

Deploying session-based recommendation models in practice presents significant
challenges for data scientists. While these models often achieve strong results in
controlled research environments, translating them into production systems is far from
straightforward. These challenges arise from the need to choose the most suitable model
from a large number of models. Each model requires efficient online computation
to generate recommendations on the fly. Many of these models are implemented in
academic libraries, which often lack robust support for model deployment and inference
optimizations. As a result, the inference performance and deployment costs of these
models are often unclear. We are therefore interested in the following question:

RQ3 How can we automatically evaluate the inference performance of SBR models
under different deployment options?

To address this question, we develop and utilize benchmarking frameworks capable
of evaluating the inference performance of SBR models across various e-commerce
deployment configurations. Additionally, we will explore how such frameworks can
identify high-performing models and cost-efficient deployment setups tailored to diverse
e-commerce use cases. This understanding is particularly crucial in large-scale e-
commerce platforms like Bol, where millions of user interactions drive the generation
of SBR, and the ability to fine-tune the deployment configuration is key to maintaining
system performance and scalability.

However, these interactions often include problematic or noisy data, such as in-
consistent clicks within a single user session. For instance, a session might involve a
mix of clicks on wooden toys intended for vastly different age ranges, potentially de-
grading the quality of recommendations. Identifying and mitigating the impact of such
harmful interactions is critical to maintaining the reliability and accuracy of production
recommendation systems.

Quantifying the influence of individual data points is essential for improving recom-
mendation quality in the presence of noisy or problematic interactions. Data Shapley
values (DSV), grounded in cooperative game theory, offer a theoretically sound method
for evaluating the contribution of each data point to the performance of a machine
learning model. This approach offers valuable insights into which data points drive
model predictions and which might be harmful. However, the practical adoption of Data
Shapley values [32] in real-world systems is hindered by their computational complexity,
which scales poorly with the size of modern datasets containing millions of interactions.
Existing work has focused on small-scale experiments involving datasets with only
hundreds of data points [32, 61], leaving a significant gap in scalability for real-world
applications. This scalability challenge becomes even more critical in the context of
large-scale production systems, such as the sequential kNN-based recommendation
system deployed at Bol, which processes datasets containing millions of interactions
daily. Addressing this challenge is both a theoretical and practical necessity, motivating
our fourth research question:

RQ4 How can we efficiently compute Data Shapley values for sequential kKNN-based
recommendation systems on real-world datasets with millions of datapoints?

1.2. Main Contributions

To address the computational challenges of estimating Data Shapley values for large-
scale datasets, we investigate the design of a scalable approach tailored to sequential
kNN-based models. This research focusses on leveraging key characteristics of interac-
tion data, such as sparsity and locality, to optimize the estimation process. We explore
methods for identifying and computing Shapley values for only the most relevant data
points for each query while minimizing computations for less relevant interactions.

Through this investigation, we aim to develop a method that enables the practical
application of Data Shapley values in real-world recommendation systems. This work
will provide a foundation for understanding the relationship between data quality and
system performance, contributing to the broader adoption of data importance metrics in
large-scale recommendation systems.

Building on this, we explore whether Data Shapley values can be helpful for de-
bugging real-world interaction data in sequential kKNN-based recommendation systems.
This motivates our final question:

RQS5 Are Data Shapley values helpful for debugging real-world interaction data in
sequential kKNN-based recommendation systems?

To assess the utility of Data Shapley values (DSVs), we investigate their potential as
a tool for identifying and addressing inconsistencies or noise in real-world interaction
data within sequential KNN-based recommendation systems. In large-scale e-commerce
platforms like Bol, user interaction data often includes challenges such as irrelevant
clicks, low-quality product metadata, or inconsistent user behavior, which can affect
system performance.

We will explore the application of DSVs, which quantify the contribution of indi-
vidual data points to the performance of machine learning models, to detect potentially
problematic data. We will analyze DSVs across multiple datasets from Bol, including
session-based browsing data and next-basket purchase histories, and examine their
relationship to data issues that may not be evident through traditional data cleaning
methods. This investigation will provide insights into the potential role of DSVs in
debugging large-scale interaction datasets.

This concludes the overview of the research questions that are answered in this
thesis. Next, we turn to an overview of the main contributions of this thesis.

1.2 Main Contributions

We divide our contributions into theoretical, empirical, and software contributions.

Theoretical contributions

* We introduce an algorithm for optimizing serving latency during bulk updates,
which dynamically adjusts the insertion rate based on real-time CPU load mon-
itoring. This algorithm ensures that the system adheres to latency SLAs while
maintaining optimal CPU performance, preventing overload during large-scale
data updates (Chapter 2).

1. Introduction

* We introduce the Vector-Multiplication-Indexed Session kNN algorithm, which
we abbreviate to VMIS-KNN, an index-based variant of a state-of-the-art nearest
neighbor algorithm for session-based recommendation, which scales to use cases
with hundreds of millions of clicks to search through (Chapter 3).

* We introduce an algorithm for backpressure-aware load generation that dynam-
ically ramps up throughput while monitoring the system’s ability to handle re-
quests in real-time. This algorithm ensures graceful degradation under high load
conditions, identifying throughput thresholds where models fail, and enabling
more accurate latency measurement during stress testing of deployed models
(Chapter 4).

* We introduce KMC-Shapley, a scalable variant of a recent Monte Carlo-based
algorithm to estimate the Data Shapley Value [32] that exploits the fact that our
recommendation systems are built on a special class of models, namely nearest-
neighbor models for sequential recommendation, and that the interaction data in
real-world recommendation systems is extremely sparse (Chapter 5).

Empirical contributions

* We conduct a study on enhancing the predictive performance of a real-world
recommendation system in production at Bol. We confirm the finding from [70]
that simple VS-KNN approach outperforms neural network based approaches in
session-based recommendation on e-commerce data (Chapter 3).

* We discuss design decisions and implementation details of our production recom-
mendation system Serenade, which applies stateful session-based recommenda-
tion with VMIS-kNN, and can handle more than 1,000 requests per second with a
response latency of less than seven milliseconds in the 90th percentile using only
2 vCPU’s (Chapter 3).

* To the best of our knowledge, we provide the first empirical evidence that the
superior predictive performance of VMIS-kNN/VS-kKNN from offline evaluations
translates to superior performance in a real-world e-commerce setting; we find
Serenade to drastically increase a business-specific engagement metric by several
percent, compared to the legacy system at Bol (Chapter 3).

* We present an experimental study for ten different SBR models in challenging
settings resembling real-world workloads encountered at Bol. We determine
performant and cost-efficient deployment options in terms of model and cloud
instance types for a variety of online shopping use-cases (Chapter 4).

* We identify severe performance bottlenecks in the open-source TorchServe infer-
ence server from PyTorch ecosystem and in the implementations of four models
from the open-source RecBole library and submit bug reports [97]. These include
the multiplication of very sparse matrices using dense operations in RepeatNET
and repeated CPU-GPU data transfers in SR-GNN and GC-SAN (Chapter 4).

1.3. Thesis Overview

» We discuss the design of our library Illoominate for debugging large scale recom-
mendation data via data valuation (Chapter 5).

* We demonstrate that our KMC-Shapley algorithm is orders of magnitude faster in
estimating Shapley values compared to TMC-Shapley, specifically for sequential
k-nearest neighbors (kNN) recommendation models on very sparse e-commerce
datasets. The results highlight the efficiency and scalability of our approach,
tested on both public and private datasets containing millions of interactions
(Chapter 5).

* We discuss various applications of Illoominate on click and purchase data from
Bol. These applications include the identification and removal of dangerous
products and products with low quality metadata, the detection of account sharing
behaviour and the improvement of ecological sustainability of recommendations
via data pruning. Furthermore, we provide initial evidence that our computed
DSV’s are also meaningful for neural recommendation models (Chapter 5).

Software contributions

* We make our implementation of Serenade, the session-based recommendation
system currently in production at Bol, available under an open license, including
downloadable binaries for Linux, Mac and Windows, at https://github.com/
bolcom/serenade (Chapter 3).

* We make the source code of Etude and our experimental results available under
an open license at https://github.com/bkersbergen/etudelib (Chapter 4).

* We make our data importance framework Illoominate available under an open-
source license, including a python binding https://github.com/bkersbergen/
illoominate (Chapter 5).

1.3 Thesis Overview

This section briefly outlines the structure of the thesis and offers guidance on how to
approach it. Chapters 2-5 address the research questions outlined earlier. Each chapter
is self-contained, offering the necessary background and relevant related work. In
Chapter 6, we conclude the thesis and suggest directions for future research.

1.4 Origins

The chapters in this thesis are all based on published papers.

Chapter 2 is based on the following publication:

B. Kersbergen and S. Schelter. Learnings from a retail recommendation
system on billions of interactions at bol.com. In 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE), pages 2447-2452, 2021.
doi: 10.1109/ICDE51399.2021.00277 [51].

https://github.com/bolcom/serenade
https://github.com/bolcom/serenade
https://github.com/bkersbergen/etudelib
https://github.com/bkersbergen/illoominate
https://github.com/bkersbergen/illoominate

1. Introduction

Chapter 3

Chapter 4

Chapter 5

BK: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Resources, Software, Visualization, Writing — Original Draft
Preparation, Writing — Review & Editing. SSC: Conceptualization, Method-
ology, Supervision, Validation, Visualization, Writing — Original Draft
Preparation, Writing — Review & Editing.

is based on the following publication:

B. Kersbergen, O. Sprangers, and S. Schelter. Serenade — Low-latency
session-based recommendation in e-commerce at scale. In Proceedings
of the 2022 International Conference on Management of Data, SIGMOD
’22, page 150-159, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392495. doi: 10.1145/3514221.3517901 [52].

BK: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Resources, Software, Validation, Visualization, Writing —
Original Draft Preparation, Writing — Review & Editing. OS: Formal
Analysis, Investigation, Methodology, Software, Writing — Original Draft
Preparation, Writing — Review & Editing. SSC: Conceptualization, Method-
ology, Software, Supervision, Validation, Visualization, Writing — Original
Draft Preparation, Writing — Review & Editing.

is based on the following publication:

B. Kersbergen, O. Sprangers, F. Kootte, S. Guha, M. de Rijke, and S. Schel-
ter. Etude — Evaluating the inference latency of session-based recommen-
dation models at scale. In 2024 IEEE 40th International Conference on
Data Engineering (ICDE), pages 5177-5183, Los Alamitos, CA, USA, May
2024. IEEE Computer Society. doi: 10.1109/ICDE60146.2024.00389 [53].

BK: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Resources, Software, Validation, Visualization, Writing —
Original Draft Preparation, Writing — Review & Editing. OS: Validation,
Formal analysis, Writing — Original Draft Preparation, Writing — Review &
Editing. FK: Data Curation, Investigation, Software, Validation. SG: Soft-
ware. MdR: Conceptualization, Funding Acquisition, Methodology, Super-
vision, Writing — Review & Editing. SSC: Conceptualization, Methodology,
Software, Supervision, Visualization, Writing — Original Draft Preparation,
Writing — Review & Editing.

is based on the following publication:

B. Kersbergen, O. Sprangers, B. Karla§, M. de Rijke, and S. Schelter. II-
loominate — Scalable debugging of recommendation data in e-commerce.
Under submission, 2025 [54].

BK: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Resources, Software, Validation, Visualization, Writing —
Original Draft Preparation, Writing — Review & Editing. OS: Validation.
BKS: Validation, Formal analysis, Writing — Review & Editing. MdR:

1.4. Origins

Conceptualization, Methodology, Supervision, Writing — Review & Edit-
ing. SSC: Conceptualization, Investigation, Methodology, Software, Su-
pervision, Validation, Visualization, Writing — Original Draft Preparation,
Writing — Review & Editing.

Learnings from a Retail Recommendation
System on Billions of Interactions at
bol.com

2.1 Introduction

Today’s internet users face an ever increasing amount of information. This situation
has triggered the development of recommendation systems: intelligent filters that learn
about the users’ preferences and suggest relevant information for them. With rapidly
growing data sizes, the predictive performance, processing efficiency, and scalability of
machine learning-based recommendations systems and their underlying computations
becomes a major concern.

In this chapter, we describe the architecture of a real-world recommendation system
ABO for bol.com, a large European e-commerce platform which handles billions
of interactions on several dozen million items every day in Section 2.3. The ABO
(“Anderen bekeken ook,” Dutch for “others also viewed”) recommendations are shown
on the product detail page' to enable customers to discover other products that are
relevant to them, such as different versions of the same product, similar products, or
products that are complementary to the displayed item. We describe the individual
components of our system, which are backed by cloud infrastructure from the Google
Cloud Platform such as BigTable and BigQuery. In addition, we detail our nearest-
neighbor-based recommendation approach, we discuss how we conduct distributed
offline model training, and how we efficiently serve the recommendations online with
low latency.

A natural question when operating a real-world recommendation system is how
to improve its predictive performance. In this work, we explore two directions for
improvement and present the results of two corresponding studies. This leads us to our
first research question.

This chapter was published as B. Kersbergen and S. Schelter. Learnings from a retail recommenda-
tion system on billions of interactions at bol.com. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 2447-2452, 2021. doi: 10.1109/ICDE51399.2021.00277.

Thttps://www.bol.com/nl/p/-/9300000032324896

11

https://bol.com
https://www.bol.com/nl/p/-/9300000032324896

2. Learnings from a Retail Recommendation System

RQ1 Which techniques can improve both the predictive performance and user accep-
tance of recommendations in large-scale SBR systems?

To address this question, we investigate the potential of algorithmic improvements
in Section 2.4. Neural networks have shown outstanding performance in computer
vision [58] and natural language processing tasks [9], and therefore we evaluate recently
proposed neural network-based approaches [41, 63, 67, 125] for session-based recom-
mendation on real data from our platform, based on an existing academic study [70].
We evaluate the predictive performance of these neural networks, as well as their de-
ployability for production settings, in terms of training time, cost of hyperparameter
search, prediction latency, and scalability.

We also focus on system-specific improvement by optimizing our serving infrastruc-
ture to drastically reduce its response latency (Section 2.5). We control the insertion
rate of bulk updates into the production database of our recommendation system, in
order to adhere to a latency SLA (service-level agreement) of 50ms for recommendation
responses. A large-scale online A/B test on 19 million user sessions was conducted to
investigate the impact of this response latency reduction on the predictive performance
of our recommendation system.

In summary, we provide the following contributions in this chapter:

* We discuss the design of a large-scale recommendation system handling billions
of interactions on a European e-commerce platform (Section 2.3).

* We present two studies on enhancing the predictive performance of this system:
(i) We evaluate recent neural network-based approaches on proprietary data
from our e-commerce platform, and confirm recent results outlining that the
benefits of these methods with respect to predictive performance are limited,
while they exhibit severe scalability bottlenecks (Section 2.4); (ii) We optimise
the response latency of our serving system, and conduct an A/B test on the live
platform with more than 19 million user sessions, which confirms that the latency
reduction correlates with a significant increase in metrics based on purchases and
revenue (Section 2.5).

* We discuss the implications of our findings with respect to real-world recommen-
dation systems, as well as future research on session-based recommendation (Sec-
tion 2.6)

2.2 Related Work

Recommendation systems are an active research area [94], which is regularly fueled by
industry challenges such as the “Netflix Prize” competition [57]. Unfortunately, it is
often difficult to translate academic progress into deployable solutions which need to be
able to handle billions of interactions. The winning solution of the Netflix challenge
for example never went into production [4]. A classical approach to recommendation
mining are nearest-neighbor methods [13, 62, 98, 99], which are widely deployed in
industry [19, 20, 44]. In the area of session-based recommendation, which is especially
important for e-commerce scenarios, many neural network-based approaches have

12

2.3. System Architecture

recently been proposed [41, 63, 67, 125], and there is an ongoing discussion of their
relation to conceptually simpler nearest-neighbor methods, which outperform them on
many datasets [45, 70].

2.3 System Architecture

In this section we provide a high-level overview of the architecture of our recom-
mendation system, as illustrated in Figure 2.1. We describe our recommendation
approach (Section 2.3.2), distributed model training (Section 2.3.3), and how to serve
low-latency recommendations in response to user requests (Section 2.3.4).

2.3.1 Overview

ABO is designed for distributed computation and implemented on top of Apache Spark
[126]. All of our components are loosely coupled, so they can run independently
from each other, while exchanging data via a distributed filesystem. Our architecture
consists of a batch system that is responsible for executing data-intensive model training
workloads offline on 18 billion user-item interactions which is 3.5TB in size. We
periodically precompute the recommendations for every item in our catalog, typically
once per day for all 70M products. The online serving system is responsible to serve
recommendations online with low latency. The most important Big Query data source
for the candidate algorithms is the click data containing the historical production
interactions from customers, including clicks, purchases and shopping cart additions.
This data source grows by about 30M records per day. We clean and filter this data,
and join it with the catalog and offer data sources to determine active recommendable
products. We describe the components of our system from Figure 2.1 in detail:

Candidate generation. We compute nine recommendation models that each gener-
ate recommendations for products in the catalog: (i) Related-Products recommends
products that where clicked after clicking items, (ii) Order-After-Click recommends
the products that where purchased after clicking an item, (iii) Purchased-Together
recommends products that are purchased together, (iv) Family recommends products
that only differ in one product attribute such as size or color from a recent item. (v) Sim-
ilar recommends products that are similar in title and description using cosine similarity
with tf-idf weighting. (vi) Trending recommends products that are popular in the same
category (vii, viii, ix) Creator, Brand & Publisher recommend products from the same
content creator, brand or publisher. Note that each model has it own MLIib pipeline
and the parallel execution and machine resource allocation is automatically handled by
Spark.

Ensembling & business rules. The ensembling component aggregates the outputs of
all nine recommendation models to generate a final set of recommendations per item,
and applies a set of manually defined business-specific filters to the recommendations.
These filters remove potentially unwanted recommendations, such as combinations of
adult and non-adult products.

13

2. Learnings from a Retail Recommendation System

offline model training online servin

load-aware
bulk udate render
o2 o S g) % ' c recommendations
2 ®2—5 E| 8¢ 25
SEANE Oleg c 2o S 5.3
T os3 | o B 2 S 5 &
SEet 2 3 885
O oo & 8 = Q 2
o 0 £
J\Z T L T)
PySpark B bear bol.cont™

GoogleCloud kubernete:
igtable

Figure 2.1: Architecture overview of the offline training and online serving components
of our retail recommendation system, based on Apache Spark and Apache Beam, and
backed by infrastructure from the Google Cloud Platform.

““Avalanche”. This component handles the bulk update of the pre-computed recommen-
dations into the Bigtable database of the prediction server, our online serving component.
It is implemented on top of Apache Beam, and converts the recommendations to a Pro-
tobuf format with a fixed maximum amount of 21 recommended products to guarantee
fast deserialization at serving time. The avalanche component will automatically adjust
its insertion rate into BigTable to guarantee a low serving latency during the ingestion
(see Section 2.5 for further details).

Prediction server. The task of this component is to serve the recommendations to
end users with low latency. We implement it in Java on top of the Spring framework
running in a Kubernetes cluster. This component elastically scales its underlying cluster
of machines using Kubernetes’s Horizontal Pod Autoscaler, by automatically spawning
or removing extra serving nodes based on the overall CPU load.

Webshop. This component communicates with the prediction server and renders the
final web page served to customers, which also includes the product recommendations.

2.3.2 Recommendation Approach

Next we describe the nearest neighbor-based algorithms underlying the first three
approaches of our recommendation models, and subsequently discuss how to implement
the model training in a scalable dataflow system.

Item-based recommendation. We leverage item-based collaborative filtering for rec-
ommendations [98], a simple but highly popular approach, deployed in many production
settings [19, 20, 44]. This approach compares user interactions to find related items in
the sense of “people who like this item also like these other items.” The resulting pairs
of cooccuring products are later on combined with the output from the other models and
re-ranked. Our system bases its recommendations on so-called “implicit feedback data”
e.g., count data that can easily be gathered by recording user actions such as clicks,
shopping cart items or purchases.

Collection and scoring of item cooccurrences. We first clean the recorded interaction
data in windows of 24 hours: we filter out data from users who visited an unusual

14

2.3. System Architecture

amount of items during that time window. Next, we set the item cooccurrence count
cq(fl)j , between item ¢ and item j to one if we find a cooccurrence in a sliding window
of 42 days for a user v who interacted with these items in the given window ¢. Note
that the count is O otherwise, and that we additionally record the type of interaction g
(e.g., click or purchase). Note that we do not use personal identifiable information to
determine the recommendations in order to respect the privacy of our users. Based on
the collected cooccurrences, we compute the score s;; for all observed cooccurrences
citi)j o of an item pair 7 as follows. We sum up the observed cooccurrence counts across
all users u, windows ¢ and interaction types g. We apply an interaction specific weight
wy to each cooccurrence and decay the score with a function y(¢) based on the amount

of days passed since that interaction happened, to compute the final similarity score

8ij = D w2t 2 V() Wy cgfi)j 4~ We filter out item pairs below a certain threshold to
prevent recommending pairs with low user support.

Ensembling. We finally compute an ensemble to aggregate the item-to-item recom-
mendations from our nine different models. Our models include collaborative filtering
based approaches like the one described previously, but also content-based approaches
that compute item similarity based on item metadata. The latter approach has the
advantage to also provide recommendations for ‘cold-start’ items for which we have
not seen interactions yet and which cannot be handled by out-of-the-box collaborative
filtering algorithms therefore. The ensemble combines the algorithm-specific scores
from all models with a weighted sum with manually tuned chosen weights. The final
weights are based on (i) the results of offline evaluation experiments, measuring the
normalized discounted cumulative gain (NDCG) on held-out conversion, revenue and
click data; (ii) online A/B tests in the live system measuring several business metrics;
and (iii) qualitative offline evaluation by business experts.

2.3.3 Distributed Model Training

Next, we describe how to compute our cooccurrence-based recommendations with
Apache Spark [126]. The input for our model is clickstream data that spans several years
of time, containing more than 18 billion user-item interactions at the time of writing.
The dataset comprises 3.5 terabytes of data, and is stored in Google BigQuery (BQ).
This data contains historical user actions from our webshop such as product views,
additions to the shopping cart, and purchase events.

We process this data in parallel with Apache Spark. We model our computa-
tions based on the abstractions for feature transformations, models and evaluators of
Spark MLLib [77], which improve the reusability and composibility of the computations.
In accordance with our previously described recommendation approach, we partition
the user-item interaction data by day (corresponding to the window ¢ from the previous
section), and collect the item cooccurrences via a distributed self-join on the user id.
The collection of the item cooccurrences for one day is independent of the collection
of the item cooccurrences for other days which allows for massive parallelism in the
computation. We store the respective cooccurrence counts per day in the distributed file
system. The scoring of the cooccurrences is conducted by a second Spark job, which
reads these cooccurrence counts, sums them up according to the scoring function and

15

2. Learnings from a Retail Recommendation System

retains the top scored item pairs per item.

We execute the resulting computation in the Google cloud leveraging the Dataproc
service.” The corresponding cluster is configured to autoscale up to 75 worker nodes
of type n1-highmem-8 each with a S00GB disk. We use dataproc image_version ‘1.4’
which provides Apache Spark ‘2.4’. Executing the Spark jobs for the offline model
training (all nine recommendations models, ensembling, and business rule filtering)
takes approximately two hours.

2.3.4 Online Serving

The concerns of generating and serving the recommendations are separated in our
architecture. The prediction server component is responsible for serving the recommen-
dations with low latency. We implement it as a Java Spring service with BigTable as
database backend. Our service is designed to perform auto-scaling of its computational
resources: it spawns or revokes additional machines based on the current CPU load,
and is also responsible for managing the amount of BigTable machines. The service
achieves this by monitoring the CPU load of the BigTable machines every minute, and
adjusting the amount of machines correspondingly. In order to prevent stale data being
served from BigTable, we apply a simple optimistic locking scheme: After data is
written to BigTable, we update a counter in a BigTable table and set the timestamp
to the start of the insertion time. Our service compares the timestamp of that counter
value with the column value timestamp before serving the value for that key. If the
counter timestamp value is greater than the timestamp of the column value the row is
not returned. Our webshop performs approximately 1,500 requests per second to the
serving component of which approximately 400 requests per second are going to the
recommendation system.

A natural question when operating such a real world recommendation system is
how to improve its predictive performance. In the following sections, we explore two
directions for improvement.

2.4 Neural Networks versus Nearest Neighbor Meth-
ods for Session-Based Recommendation

In recent years, neural networks have drastically outperformed traditional ML models
in various domains such as computer vision [58] and natural language processing [9].
It is therefore a natural question to explore the benefits of neural-based approaches in
comparison to nearest neighbor techniques (such as our system) for our e-commerce
scenario as well. In contrast to academic studies, we have to look at additional dimen-
sions such as scalability and training cost as well, in order to judge whether it would
make sense to deploy a neural-based approach.

The academic setup that is closest to our production use case is session-based
recommendation, where the goal is to predict the next item (or the set of next items)
that a user will interact with, given the current items of her session on e-commerce

thtps ://cloud. google.com/dataproc

16

https://cloud.google.com/dataproc

2.4. Neural Networks versus Nearest Neighbor Methods

datasets. Interestingly, recent academic research [45, 70] indicates that neural-based
approaches do not outperform classical nearest neighbor approaches in this scenario.
We replicate a prominent study [70] on a sample of our production data to evaluate
whether it may be beneficial to invest in neural approaches for our use case, and to
investigate the scalability and training performance of current neural-based approaches
for session-based recommendation on a large-scale e-commerce data. We include our
approach as well, even though it has not been specifically designed and optimised for
this specific type of evaluation, but can be considered a special case of session-based
recommendation as it only considers the most recent item in the session. Our main goal
of this study is to confirm that the family of nearest neighbor-based algorithms provides
state-of-the-art performance on e-commerce recommendation tasks.

2.4.1 Data & Algorithms

Dataset. We use real-world clickstream data from our platform for our study. We
create five samples, each spanning 31 days from different times of the year, in order to
minimise the impact of seasonal effects. We bin users by the amount of purchases that
they made, and apply stratified sampling based on these bins to select a set of sessions
that represents the activities of a wide range of our customers. We include around 1.2
million actions on 120 thousand items in each sample.

Algorithms. We include eight recommendation algorithms in our evaluation, in accor-
dance with [70]. Four of these employ neural network-based learning approaches for
session-based recommendation: GRU4Rec [41], an RNN-based approach in combi-
nation with ranking loss functions [40] tailored to the session-based recommendation
setting; NARM [63], an attention mechanism-based approach that aims to learn a user’s
sequential behavior in the current session; STAMP [67], an attention mechanism-based
approach that aims to learn a user’s sequential behavior in the current session by also
learning the priority of the last item; and NEXTITNET [125], an approach employ-
ing convolutions to learn high-level representations of both short-and long-term item
dependencies.

We additionally include the following four nearest-neighbor methods from [70]
in our study: AR (Association rules), an approach based on counting pairwise item
cooccurrences in the observed sessions; SR (Sequential rules), a frequent pattern mining
approach based on sequential cooccurrences in the observed sessions, as well as S-KNN
& VS-KNN (Session k-Nearest Neighbor), two nearest-neighbor approaches based on
session similarity, where the latter puts more emphasis on recent events in sessions.

Experimental setup. We evaluate the predictive performance of all methods on our
five data samples, based on the experimentation framework provided by Ludewig et
al. [70]. We use the first thirty days of each dataset for training and evaluate the
predictions for the subsequent 31st day. Testing on a consecutive day also resembles
our production setting, where we re-train our model every day. For each session in
the test data we replay one interaction after another. After each revealed interaction,
we compute recommended items and compare them to the remaining interactions. We
execute the training for each model in the Google cloud on a n1-highmem-8 instance

17

2. Learnings from a Retail Recommendation System

0.03 MAP@20 0.08 Precision@20 oa Recall@20
0.06
0.02 0.3
0.04 0.2
cCcogEoQs - cCcogEcoQs - : cCcogEoQs -
EESEREST EEBEZEST EESESECT
nn © nn © nn ©
> c 2 > c g > c 2
MRR@20 training (s) p90-pred (ms)
0.30
104 200
0.25
102 100
0.20
0
cCC>S O QL cCC> [eNoR_1 cCC>S O QL -
EEEESES® EESESESY EEEESERT
e 2T © wun & wn ¢ ©
> k7 > i > @

Figure 2.2: Prediction quality, training time and the 90th percentile of the prediction time
for session-based recommendation with the neural-based (red) and nearest-neighbor-
based (green) recommendation approaches (including our approach ABO which was not
designed for this task), averaged over five different data samples from our e-commerce
platform.

with a nvidia-tesla-t4 GPU.

Metrics. We report four metrics computed from the top 20 recommended items: Mean
Average Precision (MAP@20), Precision (P@20) and Recall (R@20) evaluate to what
extent an algorithm is able to predict the next items in a session, while Mean Reciprocal
Rank (MRR @20) evaluates to what extent an algorithm is able to predict the immediate
next item in a session. We also do not report prediction times for ABO, which are hard
to compare to the times of the other approaches, as ABO executes key-value lookups in
BigTable in GCP, which includes network communication.

Hyperparameter optimization. Hyperparameter search for neural-based recommenda-
tion methods can be very time consuming, even on small data [70]. We therefore apply
the following approach to tune the hyperparameters of all methods. We explore 100
combinations of hyperparameters with a random search on a data subset comprised of
100,000 interactions, and select the hyperparameters that result in the best MRR @20.
Note that we had to schedule the hyperparameter search in parallel on different machines
in the cloud to retrieve results in a reasonable time, even when allowing the methods to
use GPUs. The hyperparameter search for NARM for example took more than six days
of compute time, (in contrast to less than two hours for the VS-KNN approach)!

Results. Figure 2.2 shows the results of the predictive performance measured by our
metrics, and the train/test time for neural-based and nearest-neighbor based approaches
averaged over our five different data samples. We do not provide results for the
NEXTITNET approach because it repeatedly crashed during training, which we attribute

18

2.5. The Impact of Serving Latency

to a dependency issue with the provided implementation.

We find that the nearest neighbor approach VS-KNN consistently outperforms all
neural-based approaches, and even provides a higher evaluation score for MRR @20, the
metric for which the neural-based approaches have been designed. S-KNN outperforms
all three neural networks in four out of five metrics as well. ABO outperforms the neural-
based method STAMP in MAP and Precision, as well as the baseline methods AR and
SR (even though it has not been designed and optimised for the task of session-based
recommendation). The time required to train the neural approaches is at least an order of
magnitude larger than the training time of the neighbor based approaches. Additionally,
two of the three neural based methods require much more time for inference than the
nearest neighbor methods. The 90th percentile of the time needed for a prediction with
GRU4REC and NARM on a small dataset is already higher than 100 milliseconds.

Discussion. The experimental results on our proprietary data confirm the findings from
the original study [70]: simple nearest neighbor methods outperform recent neural
network based approaches for session-based recommendation on e-commerce data. In
addition, we make several observations with respect to the deployability of the neural
methods in a real-world production scenario: (i) These methods exhibit extremely long
training times for hyperparameter search and model training even on very small datasets
(100k observations for hyperparameter search and 1M observations for training). It is
unclear whether they would even scale to our current production workload of several
billion interactions at a reasonable training cost and time; (ii) In addition, we saw the
time to produce a recommendation with GRU4REC and NARM on our small evaluation
dataset is already in a range that is far from usable in a real-world serving system, which
has to guarantee response times in the low millisecond range.

2.5 The Impact of Serving Latency on Recommenda-
tion Performance

Most research focuses on improving the predictive performance of recommendation
systems via algorithmic changes. Motivated by our production setup, we are interested
in the impact of orthogonal, systems-related improvements. These are in general hard
to study for academic researchers without access to real world systems. Work from
[5, 56] indicates that a reduction of the response latency has a positive impact on the
acceptance rate of a search engine. Therefore, we decide to investigate the impact of
response latency on our recommendation system as well.

Data center migration. As part of a bigger reorganization of infrastructure we migrated
our serving component and its database from our proprietary data center (DC) to
the Google Cloud Platform (GCP). This migration included several changes such as
upgrading the version of Java and the libraries we use in our serving component, as well
as rewriting code for retrieving records from the database and serving them. We use
BigTable in GCP as alternative to Apache Cassandra from the DC setup. In the DC,
we ran the serving component in VMWare, while in GCP we run it via Docker images.
Note that the serving component has to adhere to a strict service level agreement in
each setup: If the webshop does not receive a response within 150ms it will discard the

19

2. Learnings from a Retail Recommendation System

Algorithm 1 Control of the insertion rate of Avalanche.

1: function CONTROL_INSERTION_RATE(r, ¢, b, d)
2 Input: Insertion rate (insertions per sec) conducted by Avalanche,
3 average CPU load in BigTable ¢ (percent), number of BigTable nodes b,
4 number of Dataflow nodes d in Avalanche.
S: Output: Updated insertion rate limit for Avalanche.
6: rmax < (b-10000) /d
7: Ocpu <40 — ¢

8 if ¢ > 40 return max(1, r + 20 - dcpu)

9 elseif ¢ > 35 return r

0 elseif ¢ > 30 return min(7max, 7 + dcpu)
1

10:
11: else return min(rmax, r + 3 - dcpu)

request and render the web page without the recommendation.

Optimization for serving latency during bulk updates. We notice that this SLA is
likely to be violated during the daily bulk update of our pre-computed recommendations
in the prediction server (Section 2.3). In order to adhere to the latency SLA, the
recommendations must be inserted without raising the CPU load on BigTable too much.
This is challenging because the CPU load varies during the day and even while writing
the data. We address this issue by sharing the responsibility of maintaining a low
BigTable CPU load with the Avalanche job, which inserts updated recommendations
into BigTable. We add a rate limiter mechanism to control the insert rate of Avalanche
as shown in Algorithm 1, aiming for an average CPU load of 35% in the BigTable
nodes. We obtain the CPU load of the BigTable nodes every minute, and update the
insertion rate of the Apache Beam job in Avalanche which conducts the bulk update.
Note that the number 10,000 refers to the minimum amount of requests per second that
a BigTable machine is guaranteed to answer.

2.5.1 Experimental Evaluation

As part of our infrastructure migration, we conduct a large-scale online A/B test on our
e-commerce platform to measure the impact of the reduction in serving latency on the
acceptance of our recommendations.

Experimental Setup. Our website shows recommendations on every product page and
makes them available as soon as the page loads. We run a large-scale online A/B test for
a period of two weeks, where we divide visitors into two groups: The first group is served
from the DC architecture, while the second group is served from the GCP architecture.
We ensure that each visitor remains in the same A/B test group for the duration of
the experiment via a persistent cookie that stores the group assignment. In total, we
include more than 19 million user sessions in this experiment. The recommendations
served from the DC and GCP architectures originate from the same algorithm and data,
and are therefore identical. We measure the distribution of the latency between our
prediction servers and webshops (deployed in DC and GCP), as well as two important
business metrics based on orders and revenues. The circuit-breaker timeout in webshop
for the recommendation service had been set to 150ms for this experiment, and our
infrastructure is constantly monitored for request discards by site reliability teams.

20

2.6. Learnings & Future Work

Results & Discussion. During the period of the experiment, we observe that the
90th percentile of the response latency distribution between the prediction service and
our webshop® running in the DC is 32ms, while the GCP setup only requires 15ms.
Furthermore, we observe a 2.19% increase in an important order-based metric, as well
as a 2.31% increase in a corresponding revenue-based metric. We confirm that the
resulting positive impact in metrics is statistically significant with a chi-squared test
of independence. In summary, we find that important order and revenue based metrics
correlate positively with a reduction in response latency by 17ms. Our results indicate
that users are more likely to perform a purchase if recommendations are served with
lower latency, given two content-wise identical recommendation systems.

2.6 Learnings & Future Work

In this chapter, we focus on how to improve the predictive performance of a real-world
recommendation system with both algorithmic and systems-related approaches. We
confirm the finding from [70] that the simple nearest-neighbor-based VS-KNN approach
outperforms modern neural network-based methods in session-based recommendation
on e-commerce data. We additionally found that VS-KNN is orders of magnitude faster
to train than the neural-based methods. This is an important property for a production
systems that have to conduct regular retraining of their models, and adhere to strict time
constraints for that.

Our second study indicates that reducing the response latency for serving has a
significant impact on the acceptance of recommendations in e-commerce. We A/B
tested this impact on over 19 million sessions where we were able to provide visitors
a better experience by improving the serving latency, which resulted in a significant
increase in business-relevant metrics. We ran this study during an ongoing data center
migration, which gave us the unique opportunity to investigate the effect of improving
the latency, instead of making it artificially worse, as done in previous studies for search
engines [5, 56].

In the future, we will explore how to scale up well-scoring algorithms for session-
based recommendation (in particular VS-KNN) to a full production workload with
several billion interactions. We think that our studies also outlined interesting research
directions for improving the suitability of the neural-based recommendation algorithms
for production settings.

In the next chapter, we will explore adaptations to VS-kNN for efficient recommenda-
tions computation at scale and present the design and implementation of our scalable
session-based recommendation system.

3Note that we measure the response latency at the webshop, our frontend server; the total latency for the
customers includes additional network communication and the rendering of the web page on their devices.

21

Serenade — Low-Latency Session-Based
Recommendation in e-Commerce at Scale

In this chapter, we explore how to adapt the VS-kNN algorithm to enable efficient
recommendation computation at scale, addressing the challenges posed by large datasets
and the need for low-latency responses in real-world applications, introducing our
adaptation of VS-kNN: Vector-Multiplication-Indexed-Session kNN (VMIS-kNN).
This leads to research question:

RQ2 How can we scale VS-kNN to efficiently handle billions of interactions while
maintaining low response times and adhering to production requirements in a
real-world SBR system?

We further detail the design of our production system, Serenade, built on VMIS-KNN to
meet the demands of large-scale recommendations. Serenade achieves high efficiency
by collocating session data with recommendation requests and enabling instant de-
personalization. We will investigate whether the superior offline performance of VMIS-
kNN translates to increased user engagement in real-world recommendation systems.
To the best of our knowledge, we present the first empirical evidence that the superior
predictive performance of VMIS-kNN/VS-kNN observed in offline evaluations holds
in a real-world e-commerce setting. Our production system, Serenade, achieves a
significant increase in a business-specific engagement metric, outperforming the legacy
system by several percent.

3.1 Introduction

Session-based recommendation targets a core scenario in e-commerce and online brows-
ing. Given a sequence of interactions of a visitor with a selection of items, we want to
recommend to the user the next item(s) of interest to interact with [63, 67, 70, 93]. This
machine learning problem is crucial for e-commerce platforms [51].

This chapter was published as B. Kersbergen, O. Sprangers, and S. Schelter. Serenade — Low-latency
session-based recommendation in e-commerce at scale. In Proceedings of the 2022 International Conference
on Management of Data, SIGMOD 22, page 150-159, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392495. doi: 10.1145/3514221.3517901.

23

3. Low-Latency Session-Based Recommendation

Challenges in scaling session-based recommendation. Scaling session-based recom-
mendation systems is a difficult undertaking, because the input space (sequences of
item interactions) for the recommendation system is exponentially large (of size |I|™,
where I is the set of all possible items, and n denotes all possible session lengths),
making it impractical to precompute recommendations offline and serve them from a
data store. This is in stark contrast to classical recommendations based on collaborative
filtering [57, 98], which are relatively static as they rely on long-term user behavior [99].
Instead, session-based recommendations have to maintain state in order to react to
online changes in the evolving user sessions, and compute next item recommendations
with low latency [5, 51] in real-time.

Recent research indicates that nearest-neighbor methods provide state-of-the-art
performance for session-based recommendation, and even outperform complex neural
network-based approaches in offline evaluations [51, 70]. It is however unclear whether
this superior offline performance also translates to increased user engagement in real-
world recommendation systems. Furthermore, it is unclear whether the academic
nearest-neighbor approaches scale to industrial use cases, where they have to efficiently
search through hundreds of millions of historical clicks while adhering to strict service-
level-agreements for response latency. This scalability challenge is further complicated
by the fact that the applied session similarity functions do not constitute a metric
space (e.g., due to the lack of symmetry), which renders common approximate nearest-
neighbor search techniques inapplicable.

VMIS-kNN. In order to tackle the scalability challenge, we present Vector-Multiplication-
Indexed-Session-kNN (VMIS-kNN) in Section 3.4, an adaption of the state-of-the-art
session-based recommendation algorithm VS-kNN [70]. VMIS-kNN leverages a pre-
built index to compute next-item recommendations in milliseconds for scenarios with
hundreds of millions of clicks in historical sessions to search through. Our approach
can be viewed as the joint execution of a join between evolving and historical ses-
sions on matching items and two aggregations to compute the similarities. During
this joint execution, we minimise intermediate results, control the memory usage and
prune the search space with early stopping. As a consequence, VMIS-kKNN drasti-
cally outperforms VS-kNN in terms of latency and scalability (Section 3.6.2), while
still providing the desired prediction quality advantages over neural network-based
approaches (Section 3.6.1).

Serenade. Finally, we present the design and implementation of our scalable session-
based recommendation system Serenade, which employs VMIS-kNN, and can serve a
thousand recommendation requests per second with a 90th percentile latency of less
than seven milliseconds in scenarios with millions of items to recommend. Our system
runs in the Google Cloud-based infrastructure of Bol, a large European e-commerce
platform, and is in production usage. We discuss design decisions of Serenade, such as
stateful recommendation servers, which collocate the evolving user sessions together
with update and recommendation requests (Section 3.5.1). Additionally, we describe
implementation and deployment details (Section 3.5.2), as well as insights into the
remarkably low operational costs of our system (Section 3.7).

Offline and online evaluation. We conduct an extensive evaluation to validate the

24

3.2. Related Work

predictive performance and low latency of VMIS-KNN in Section 3.6.1. For the Ser-
enade system, we present results from a load test with more than 1,000 requests per
second, and the outcome of a three week long online A/B test of our system on the live
e-commerce platform in Section 3.6.2. Our system is available under an open license.

Contributions. In summary, in this chapter we contribute the following:

e We present VMIS-kNN, an index-based variant of a state-of-the-art nearest-
neighbor algorithm to session-based recommendation, which scales to use cases
with hundreds of millions of clicks to search through (Section 3.4).

* We discuss design decisions and implementation details of our production rec-
ommendation system Serenade, which applies stateful session-based recommen-
dation with VMIS-kNN, and can handle more than 1,000 requests per second
with a response latency of less than seven milliseconds in the 90th percentile
(Section 3.5).

* To the best of our knowledge, we provide the first empirical evidence that the
superior predictive performance of VMIS-KNN/VS-KNN from offline evaluations
translates to superior performance in a real world e-commerce setting; we find
Serenade to drastically increase a business-specific engagement metric by several
percent, compared to our legacy system (Section 3.6.2).

3.2 Related Work

Research on recommendation systems [15, 16, 28, 36, 38, 73, 83, 94, 107, 124, 129, 131,
132] is a growing field, with a close connection to industry use cases [113, 119, 122],
as illustrated by the famous “Netflix Prize” competition [57]. Translating academic
progress into deployable solutions has proven to be very difficult [51], as exemplified
by the fact that the winning solution of the Netflix prize never went into production [4].
Nearest neighbor-based recommendations, which are in the focus of our work, are a
classical approach to recommendation mining [13, 62, 98, 99, 101], and are widely
deployed in industry [19-21, 44, 81]. Despite their popularity, these approaches are
typically outperformed by matrix factorisation- and deep learning-based methods in
offline evaluations on classical collaborative filtering problems [57].

However, recent research indicates that nearest neighbor-based approaches provide
state-of-the-art performance and outperform neural networks in sequence-based recom-
mendation tasks. An example for such a task is session-based recommendation, which is
in the focus of our work, where recent studies [45, 51, 70] indicate that nearest neighbor-
based methods outperform previously proposed neural networks [41, 63, 67, 125].
Similar results have been obtained for the more general sequence-based recommenda-
tion task of next basket recommendation (where the set of items in a future shopping
basket has to be predicted). Here, the nearest neighbor-based state-of-the-art approach
TIFU-KNN [43] and simple popularity-based approaches [64] outperform neural net-
works as well.

Thttps://github.com/bolcom/serenade

25

https://github.com/bolcom/serenade

3. Low-Latency Session-Based Recommendation

Algorithm 2 Vector-Session-kNN.

function vs-kNN(s(®) | H, 7r, X\, m, k)
: Input: Evolving session s(*), set of historical sessions H, decay function 7,
match weight function A, sample size m, number of neighbors k.
Output: Scored list of recommended next items d.

H < recency-based sample OL size m from Hg
N, < k closest sessions h € H according to similarity 7(w(s(¥))) Th
for each item ¢ occuring in the sessions N s do
. H
di — nezN 1n(i) - l}—m S A(max(w(s®) @n)) - 7wE®)Tn - (1+ log %)
return item scores d

1:
2
3
4
5: HS < historical sessions that share at least one item with s
6
7
8
9

3.3 Background

We introduce session-based recommendation and the Vector-Session-kNN method.
Given an evolving session (a sequence of interactions with a set of items I) at time ¢,
the goal of session-based recommendation is to accurately predict the next item that the
user will interact with at time ¢ + 1.

Vector-Session-kNN. Vector-Session KNN (VS-kNN) [70] is a state-of-the-art nearest
neighbor based approach to session-based recommendation, which outperforms current
deep learning approaches for this task. In VS-kNN, we have a set of historical sessions
H < {0, 1}|I| represented as binary vectors in item space, and an evolving user session
s € {0, 1} at time ¢, as well as a function w(s) which replaces the non-zero entries
of s with integers denoting the insertion order of the items in s*). Algorithm 2 describes
how VS-kNN computes its recommendations for an evolving session s(*). First a
recency-based sample H of size m is taken from all historical sessions H that share at
least one item with the evolving session (Lines 5 and 6). Next, we compute the k closest
sessions N, from H according to the similarity 7(w(s*))) Th (Line 7), which applies
an element-wise decay function 7 to the entries denoting the insertion order in the
evolving session. All items occurring in these neighboring sessions are finally scored
(Lines 8 and 9) by summing their similarities (the previously computed decayed dot
product) weighted by a non-linear function \ applied to the position max(w(s(¥)) ® n)
of the most recent shared item between the evolving session s*) and the neighbor
session n. The session similarity contribution is additionally weighted by a factor of one
over the session length, and by a factor of one plus the “inverse document frequency”
log % of the item, where h; denotes the number of historical sessions containing item ¢
(a common technique from information retrieval to de-emphasise highly frequent items).
Note that the indicator function 1,,(¢) is one if item ¢ occurs in the historical session n
and zero otherwise.

Toy example. We provide a toy example for the session similarity and match weighting
computation executed by VS-kNN. Assume that we have an evolving session s(*) =
[0 110 1] representing interactions with the three items [1, 2, 4] and a historical session
h = [00 10 1] representing interaction with the items [2,4]. The function w gives us
the chronological insertion order for the evolving session, e.g., w(s(t)) = [01203]

26

3.4. Vector-Multiplication-Indexed-Session-kNN (VMIS-kNN)

of the items in s(®), starting from the first item (item 1 with insertion time 1) to the
most recent item (item 4 with insertion time 3). The insertion order is used to weight
matches between the items of the evolving session and the historical session, and the
weights are determined by the decay function 7, which is a hyperparameter of VS-kNN.
A common choice for 7 is to divide the insertion time by the session length, e.g.,
m(w(s®);) = w(s®); /||s®]||;. The similarity is finally determined by computing
the decayed dot product 7(w(s()) Th between the evolving session s(*) and historical
session h as the sum of the decayed weights for the intersection of the sessions (the
shared items), e.g., m(w(s®))Th =03 202 Tpo1o1] =243 =35
After finishing the session similarity computation, VS-kNN computes item scores
from the similarities (Lines 8 and 9). The score for an item is the weighted sum
of similarities with s from the k closest historical sessions n € N in which the
item occurs. The weights for this sum are computed by the matching function A,
which is applied to the insertion time max(w(s()) ® n) of the most recent shared item
between s(*) and n. The default choice for \ in VS-kNNis 1 — (0.1 - (max(w(s®) ®
n))) for insertion times less than 10 and zero otherwise. For our toy example, the
contribution of the matching function for h looks as follows: A(max(w(s¥) ® h)) =
A(max([01203 @ [00101])) = A(max([00203]))=A(3)=0.7.

3.4 Vector-Multiplication-Indexed-Session-kNN (VMIS-
kNN)

In the following, we present our scalable, index-based adaption of VS-kNN, which we
call Vector-Multiplication-Indexed-Session-kNN (VMIS-kKNN).

VMIS-kKNN operates on an index structure (M, t), which we build from a large
dataset of historical sessions. We create a hash index M from an item ¢ to an array
m; of the m most recent historical sessions in which the item occurs. Note that m is
a hyperparameter of VMIS-kNN, which denotes the size of the recency-based sample
from which session similarity candidates are taken. Each array m; of session identifiers
for an item ¢ is stored in descending timestamp order of the sessions (i.e., the most
recent historical session h that contained the item ¢ is the first entry in the vector m;).
The key benefit of this data structure is to allow us amortised constant-time access to
the m most recent sessions containing an item.

Furthermore, we maintain an array t where an entry ¢, denotes the integer timestamp
for a historical session h. This again provides constant time random access during the
online computation of the session similarity score across all the items in an evolving
session, as we use consecutive integer identifiers for historical sessions. Algorithm 3
describes the individual steps and data structures that VMIS-KNN leverages for efficient
session-based recommendation based on our index data structure.

Index-based session similarity computation. At the heart of VMIS-kNN is the efficient
computation of the neighbor sessions N for an evolving session s(*) using our previ-
ously introduced index structure (M, t) in the function neighbor_sessions_from_index
in Line 8.

We first initialize a set of temporary hashmaps and heaps (Line 11) which serve as

27

3. Low-Latency Session-Based Recommendation

buffers for intermediate results during the computation. Next, VMIS-KNN starts the
item intersection loop, which iterates over the items in an evolving session s(*) in reverse
order (Line 12). Our approach processes an evolving session s) in inverse insertion
order, such that the most recent (and therefore most important) items of an evolving
session are visited first. We then add the item identifier ¢ to the temporary hashset d,
such that duplicate items in the evolving session can be skipped (Lines 13—14). Next,
we look up the item in our inverted index M to obtain the vector m; containing up to
m historical session identifiers (Line 15). We then compute the decay score 7; based on
the item’s position in the evolving session (Line 16).

Now, we start a loop over each historical session j in m; (Line 17). If we have
already encountered this historical session for a different item, we add the current decay
score T; to the session score r; (Line 18). However, if the historical session is not yet
part of our temporary similarity score hashmap r, we first obtain the timestamp ¢; of
the historical session (Line 20). If our temporary similarity score hashmap r contains
less than m items, we insert the session identifier j and session similarity score r; as
(key, value)-pair into r, and we insert the session identifier 7 and session timestamp
t; as (key, value)-pair into a min-heap by (Lines 21-24). If our temporary similarity
score hashmap r already contains m sessions, we need to investigate whether to remove
the oldest session. Therefore, we first retrieve the oldest session and corresponding
timestamp from the heap b; (Line 26).

If the current historical session j is more recent than the oldest session, we need
to remove the oldest session from our temporary similarity score hashmap r and heap
b;, and update both with the values from the current historical session j (Lines 27—
31). Finally, we extract the top-k scored sessions from the max-heap N in the fop-k
similarity loop and return them (Line 33).

VMIS-KNN computes the final item scores by using the pre-computed session
similarity 7,, for a neighboring historical session n. We however simplify the item
scoring function from Line 9 of Algorithm 2 in two ways: (i) we remove the constant
factor 1/|s®| applied to each similarity (which does not change the neighbor ranking);
and (ii) we use a weight of log LZ! instead of (1 + log 1) for the similarities, which
gives us better results in offline evaluations on held-out data.

A particular advantage of VMIS-kNN is its support for early stopping, which
allows us to skip certain historical sessions during the similarity computation: we can
immediately break the session for-loop if our current historical session j is older than
the eldest session ! in our heap b; as m; is already sorted in descending timestamp
order, and will not contain more recent sessions in later positions (Line 32).

Time complexity. The time complexity of the online computation of our similarity
score is dominated by the linear time required to execute the three for-loops (Lines 12,
17 and 33) and the logarithmic time required to modify the heaps b, (Lines 24, 31) and
N, (Lines 34, 37, 38), yielding a theoretical time complexity of O(|s®| - m - log, m +
m-logy k) = O(|s'Y)| -m -logy, m) as k < m. Thus, the time complexity only depends
on: (i) the number of items in the evolving session s(*), which we cap at a maximum
value, and (ii) the number m denoting how many recent historical sessions to consider.
Hence, the time complexity of our implementation is (theoretically) independent of the
number of historical sessions |H| and the number of unique items |I| in our dataset. As

28

3.4. Vector-Multiplication-Indexed-Session-kNN (VMIS-kNN)

Algorithm 3 Vector-Multiplication-Indexed-Session-kNN (VMIS-kNN)

1:
2.
3:
4:
5
6
7

function vMIS-KNN(s(Y) | (ML, t), 7, A, m, k)

Input: Evolving session s(t), session similarity index (M, t), decay function 7,
sample size m, match weight function A, number of neighbors k.
Output: Scored list of recommended next items d.
(N, r) < neighbor_sessions_from_index(s(®), (M, t), 7, m, k)
for each item ¢ occurring in the sessions N do
. H
di < > nen, In(d) - A(max(w(s™) @ n)) -, - log %
return item scores d

function NEIGHBOR_SESSIONS_FROM_INDEX(s(?) | (M, t), 7, m, k)

initialize hashmap r for temporary similarity scores, min-heap by of cap-
acity m for the most recent similar historical sessions, hashset d for already
processed items, max-heap N s of capacity k for closest sessions
for item ¢ € s(*) in reverse insertion order do > Item intersection loop
if i ¢ d then
insert ¢ into d
m; < most recent sessions for item ¢ from inverted index M
7 decay weight 7(w(s("))); of item i in session s(*)
for session j € m; do
if j € keys(r) thenr; < r; +m;
else
t; < timestamp of session j fetched from index t
if |r] < m then
Tj 4 T
insert (j,7;) into r
insert (j, ;) into by
else
(1, t;) < current heap root of by
ift; > ¢; then
Tj < T
remove (I, ;) from r
insert (j,r;) intor
update heap root of by with (5,t;)
else break

for (j,r;) € rdo > Top-k similarity loop
if [INs| < k then insert (j,7;) into Ng
else
(n, rn) < current heap root of N ¢
if r; > ry, then update heap root of N s with (5, r;)
else if r; = r,, and t; > t,, update heap root of N with (j,7;)

return N

a micro-optimisation, we leverage octonary heaps [18] instead of binary heaps, which
have more children per node, and therefore provide better performance for workloads
like ours with frequent insertions.

Space complexity. The space complexity of the index for VMIS-kNN is dominated by
the storage cost O(]I| - m) for the hashmap holding the inverted index M, which maps
unique item indices to the m most recent historical sessions containing the item.

29

3. Low-Latency Session-Based Recommendation

Statefu' Recommendation The §hop frontend issues requests for .

. . Servers d next item
Historical (F;arallel !ndex Sessi and renders them to user devices
H n n ession Q
Session eneratio Similarity o
Database Index '\S‘hOp Frontend
index recommendation
replication e requests with evolving ﬁ
session updates —
Session Q c
Google 4 Similarity /) spring
Big f_‘rg.- ry PySporK Index o

Evolving
Sessions

next-item recommendations from the

Data-parallel batch generation of our
session similarity index from the last replicated session similarity index
180 days of browsing activities via Spark ‘%‘ RocksDB

kubernet

Serenade pods maintain partitioned copies
of the evolving user sessions, and compute

offline index generation online serving of next-item recommendations
Figure 3.1: High level architecture of the Serenade recommendation system. The offline
component (left) generates a session similarity index @ from several billion historical
click events via a parallel Spark job in regular intervals. The online serving machines
(right) maintain state about the evolving user sessions @, and leverage the session
similarity index to compute next item recommendations with VMIS-kNN in response
to recommendation requests from the shopping frontend @.

From a classical query processing perspective, VMIS-kNN conducts two aggrega-
tions (identifying the m most recent sessions with an item match, and computing their
similarities) on the result of a join between the items of the evolving session s(*) and
the historical sessions H. The efficiency of VMIS-kNN derives from the fact that we
jointly execute the join and subsequent aggregations in Algorithm 3, while only main-
taining intermediate results of a size proportional to the final outputs (instead of first
materialising the potentially large complete join result before running the aggregations).

3.5 Serenade

We present the design and implementation of our scalable recommendation system
Serenade, which leverages VMIS-KNN (Section 3.4) and provides recommendations on
the product detail pages of Bol.

3.5.1 Design Considerations

At the core of the design of our production system are two questions: (i) How to
maintain the session similarity index over time; and (ii) How to efficiently serve next-
item recommendations with low latency?

Index maintenance. We execute the index computation in an offline manner once per
day with a data-parallel implementation of the relational operations required for the
index generation. This batch job is easy to schedule and scale; note that Serenade will
thus only see sessions for new items on the platform with a delay of one day. This
“cold-start” issue is no problem in practice however, because our e-commerce platform
has a separate, specialised system for presenting new and trending items to users.

30

3.5. Serenade

Low latency serving of next-item recommendations. The biggest challenge in our
system is to serve session-based recommendations with a low latency for a catalog
containing millions of items (our business constraint is to respond in 50 ms or less for
at least 90% of all requests). As discussed in Section 3.1, we cannot precompute the
recommendations due to the exponentially large input space of potential sessions, and
we cannot apply approximate nearest neighor search techniques because our similarity
function is not a metric. As a consequence, our recommendation servers have to
be stateful, by maintaining copies of the evolving sessions, to be able to compute
recommendations online on request. We decide to replicate our session index to
all recommendation servers, and collocate the session storage with the update and
recommendation requests, so that we only have to use machine-local reads and writes
for maintaining sessions and computing recommendations. Note that similar techniques
are often used to accelerate joins [23].

3.5.2 Implementation

The high-level architecture of Serenade (derived from our design decisions in Sec-
tion 3.5.1) is illustrated in Figure 3.1. Serenade consists of two components: The offline
component (shown in the left part of the figure) builds the session index from click data
and is implemented as an Apache Spark pipeline. The online component (shown in
the right part of the figure) computes and serves session-based recommendations with
VMIS-kKNN, and is implemented as a REST application. Note that Serenade builds
upon existing Google Cloud infrastructure rented by Bol.

Offline index generation. The index generation @ from historical click data is im-
plemented as a parallel dataflow computation in Apache Spark using Spark MLLib
pipeline steps [77] as abstraction, and executed in regular intervals (typically once per
day) in Google Dataproc. It uses historical click data from the last 180 days of our
platform (stored in Google BigQuery) as its input, which amounts to roughly 2.3 billion
user-item interactions. The output of the Spark job is a compressed representation of
our index, stored in the distributed filesystem in the Apache Avro format. The index
data is later on ingested by Serenade’s serving component, where it requires around 13
gigabytes of memory.

Online serving of next item recommendations. The serving component of Serenade
is responsible for computing next item recommendations with VMIS-kNN in response
to session updates. We implement this serving component in Rust, as a web application
based on the Actix [2] framework. The shopping frontend contacts our Serenade servers
whenever a user generates new item interactions in their session (e.g., by visiting
a product detail page). The Serenade servers update the state of the evolving user
session @, and respond to the shopping frontend with a list of 21 recommended next
items for the user (the number of items required by the Ul in the frontend) based
on a VMIS-kKNN prediction @. The VMIS-kNN predictions leverage the previously
computed offline index. We additionally apply business rules to the recommendations
to remove unavailable products and to filter for adult products.

31

3. Low-Latency Session-Based Recommendation

Colocation of evolving sessions and session updates. As discussed in Section 3.5.1,
we need to colocate the evolving sessions with the recommendation requests and session
updates to be able to compute up-to-date recommendations with low latency. We
maintain the evolving sessions in a local key-value store (RocksDB [96]) directly on
the serving machines, to avoid additional network reads and writes. For collocation, we
have to partition both the evolving sessions and the recommendation requests (which
also contain the session updates) over the serving machines, based on their session
identifier. In order to guarantee that all the update/recommendation requests for a
particular session are always handled by the same machine, we configure request
routing via “sticky sessions” provided by Kubernetes’ session affinity functionality [59].
The communication with RocksDB turns out to be extremely fast; in a microbenchmark
with 10 million operations for our workload, we found the 99th percentile of the read
latency to be 5 microseconds, and the 99th percentile of the write latency to be 18
microseconds. This colocation approach provides a big latency improvement over
network reads and writes to a distributed key-value store like BigTable, where the
response latency for lookups is already 15ms on the 99.5 percentile in our experience.

Discussion. Our colocation approach can be viewed as a trade-off between reducing
the response latency and guaranteeing fault tolerance for the session data, as the session
data could be temporarily lost in cases of machines failures or elastic scaling of the
machine pool. However, this turns out to be no problem in practice for several reasons:
(i) Our service proved to be very stable, we encountered no issues in a long A/B test
running for several weeks (details will be described in Section 3.6.2), where no elastic
scaling was required, as a small set of cheap machines with a low number of cores could
reliably handle hundreds of request per second; (ii) The sessions are very short-lived
anyways, we only leverage the most recent interactions for recommendations (which
also have the highest impact on the session similarities), their loss would not have a
drastic impact, as the recommendation would quickly collect new interactions; and
(ii1) The sessions are additionally tracked by other parts of our e-commerce platform for
analytics. It is not the task of the recommendation system to store them permanently, on
the contrary, we configure RocksDB to remove the data for a session after 30 minutes
of inactivity.

Deployment. We deploy our recommendation servers via a Docker image managed
by Kubernetes. The image is created by our continuous integration infrastructure, and
we leverage a multi-stage build. In the first stage, we download all dependencies and
compile our Rust application (which results in a large image with a size of several
gigabytes); in the second stage, we reduce the size of this image by only retaining the
compiled application and the runtime dependencies. The image for Serenade is then
pushed into a Docker repository. The application is deployed to a Google Kubernetes
Engine cluster, alongside with load balancing pods (istio sidecars [106]) which
provide us with the session affinity routing required for colocating the evolving user
sessions and recommendation requests on our machines.

Depersonalisation. We are required to provide non-personalised recommendations for
users who do not give consent to leverage their session history for personalisation. This
is comparatively easy to implement with VMIS-kNN: we create a non-personalised

32

3.6. Experimental Evaluation

Table 3.1: Public and proprietary datasets for evaluation.

retailr rscl5 ecom-Im ecom-60m ecom-90m ecom-180m

clicks 86,635 31,708,461 1,152,438 67,017,367 89,883,761 189,317,506
sessions 23,318 7,981,581 214,490 10,679,757 13,799,762 28,824,487

items 21,276 37,483 110,988 1,760,602 2,263,670 3,305,412
days 10 181 30 29 91 91
public? yes yes no no no no

clicks per session

p25 2 2 2 2 2 2
p50 2 3 4 4 4 4
p75 4 4 6 7 7 7
p99 19 19 28 36 38 39

variant which only leverages the currently displayed item on the product detail page
for recommendation. This depersonalisation can be applied in real-time (e.g., when a
user revokes their consent to personalisation), as each request from the shop frontend
includes a binary flag denoting the status of the user consent.

3.6 Experimental Evaluation

In the following, we first evaluate the prediction quality and index design of VMIS-kNN
in Section 3.6.1, and subsequently evaluate the scalability and business performance of
Serenade in offline experiments and an online A/B test (Section 3.6.2). We provide the
code for our experiments.”

Datasets. We leverage a combination of public and proprietary click datasets from
e-commerce for our offline experiments. We experiment with the publicly available [95]
datasets retailrocket (an e-commerce dataset from the company “Retail Rocket™) and
rscl5 (a dataset used in the 2015 ACM RecSys Challenge), which are commonly used
in comparative studies on session-based recommendation [70]. In addition, we create
the non-public datasets ecom-1m, ecom-60m, ecom-90m and ecom-180m by sampling
data from our e-commerce platform with increasing numbers of clicks. The statistics
of these datasets are shown in Table 3.1. Each dataset consists of tuples denoting the
session_id, item_id and timestamp of a click event on the platform.

Our proprietary dataset ecom-180m is more than six times larger than the largest
publicly available dataset rsc15. We additionally show statistics of the distribution of
clicks per session in the form of its 25th, 50th, 75th and 99th percentile. We find that the
majority of sessions on e-commerce platforms is very short (e.g., the median number of
clicks per session is less than five) and that these statistics are very similar across all
six datasets. In the tail, the sessions from our platform are about twice as long though
compared to the public datasets (e.g., the 99th percentile is around 38 clicks in our data
and 19 clicks in the public datasets).

2nttps://github.com/bolcom/serenade-experiments-sigmod

33

https://github.com/bolcom/serenade-experiments-sigmod

3. Low-Latency Session-Based Recommendation

3.6.1 VMIS-kNN
State-of-the-Art Prediction Quality

Before evaluating systems-related aspects, we run a sanity check experiment for the
predictive performance of VMIS-KNN. We aim to confirm that VMIS-kNN also outper-
forms current neural-network based approaches in the task of session-based recommen-
dation in e-commerce (as recently shown for VS-kNN [51, 70]).

Experimental setup. We replicate the setup from [51, 70], and compare the predictive
performance of VMIS-kNN against three recent neural network-based approaches to
session-based recommendation (GRU4Rec [41], NARM [63] and STAMP [67]) on
various clickstream datasets sampled from our e-commerce platform. We create five
versions of the ecom-1m dataset by sampling a million clicks from certain months
in the past as historical sessions, and measure the prediction quality of the top 20
recommended items for each session of the subsequent day.

We optimise the hyperparameters of each approach on samples of the training data,
and report the average for each metric over all our evaluation datasets. We report the
metric values averaged over all five versions of ecom-1m.

Results and discussion. We first investigate the Mean Average Precision (MAP@20),
Precision (Prec@20) and Recall (R@20), which denote to what extent an approach
correctly predicts the next items in a session. VMIS-KNN outperforms the neural
approaches in all of these metrics. Its MAP@20 is .0268 compared to .0251 for the
best performing neural approach (GRU4Rec); the Prec@20 of VMIS-kNN is .0722
compared to .0680 for the best performing neural approach (NARM in this case); and
VMIS-kNN’s R@20 is .378 compared to .359 for the best performing neural approach
GRU4Rec. We additionally look at the Mean Reciprocal Rank (MRR @20), which
puts a stronger weight on the immediate next item in a session. Again, VMIS-kNN
outperforms all neural-based approaches with an MRR @20 of .286 compared to .255
for the best performing neural method (GRU4Rec in this case).

In summary, we confirm that the findings from recent studies on the state-of-the-art
performance of VS-kNN also hold for VMIS-kNN on our proprietary data. It is an
open question, why neural networks do not outperform conceptually simpler methods
in sequential recommendation. There is recent evidence that neural networks have
difficulties capturing item frequency information [43], and that many researchers do not
adequately compare their proposed neural methods against simple baselines [64, 70].

Sensitivity to Hyperparameter Choices

Next, we investigate the sensitivity of VMIS-kNN to its hyperparameters: the number
of neighbors k and the number of most recent sessions per item m.

Experimental setup. We run an exhaustive grid search over 55 combinations of the
hyperparameters (the &£ most similar sessions out of the m most recent sessions) for our
four large datasets ecom-60m, ecom-90m, ecom-180m and rscl5, where we use the last
day as held-out test set.

34

3.6. Experimental Evaluation

ecom-60m ecom-90m ecom-180m rsc15
MRR@20 MRR@20 MRR@20 MRR@20
«8 ﬂ J JI
- ‘- - " .j
Prec@20 Prec@20 Prec@20 Prec@20

50 5001.5k 50 500 1.5k

2050 5001k 10k 20 50 5001k 10k 20 50 5001k 10k 20 50 5001k 10k
m m m m

Figure 3.2: Sensitivity of MRR @20 and Prec @20 to the hyperparameters k (the number
of neighbors) and m (the number of most recent sessions per item) in our proprietary
datasets.

Results and discussion. Figure 3.2 illustrates the results of the grid search for MRR @20
and Prec @20 on our datasets with a heatmap where lighter colors indicate better metric
values. We observe a unimodal distribution of the resulting metric values for each
dataset and metric. The results differ (i) based on dataset, e.g., all samples from our
proprietary data show similar outcomes, while the distribution for rsc/5 is very different;
and (ii) based on metric, e.g., hyperparameters that work well for MRR (which focuses
on the position of the first correctly predicted relevant item) do not necessary provide
the best performance for Precision (which considers all correctly predicted relevant
items). Our results indicate that VMIS-kNN is easy to tune via offline grid search for a
given dataset and target metric.

Index Design

Next, we run a microbenchmark comparing VMIS-kNN vs. VS-kNN to validate the
performance of our index-based similarity computation.

Experimental setup. We experiment with our index and similarity computation (refered
to as VMIS-kNN) from Section 3.4 and compare it against two baseline implementations:
(i) VS-kNN — a baseline implementation that mimics VS-kNN’s similarity computation
by holding the historical data in hashmaps, and first identifying the m most recent
sessions with at least one shared item before computing the similarities, and (ii) VMIS-
kNN-no-opt, a basic variant of VMIS-kNN, which does not contain several optimisations
such as early stopping or using octonary heaps instead of binary heaps.

We conduct a micro-benchmark on the ecom-Im dataset. We ask each variant to
compute the k closest sessions for the sessions from the test set, and we randomly
pick the number of items (e.g., the session length) for each session to include in the
computation. We repeat this experiment ten times for various values of m (the number of
most recent sessions to consider) with six threads, and measure the execution times for
k =100 (trying other values of k did not significantly change the results). We implement
all algorithms in Rust 1.54 and run the comparison on a machine with an i9-10900KF
CPU @ 3.7GHz with ten cores and 64GB of RAM, running Windows 10 21H1.

Results and discussion. The bottom plot in Figure 3.3 shows the resulting runtimes

35

3. Low-Latency Session-Based Recommendation

VS-Py . VMIS-Diff B VMIS-Java N VMIS-SQL s VMIS-kNN

runtime
(micros)

ecom-1m retailrocket rscl5 ecom-60m ecom-90m ecom-180m

dataset
103 N VS-kNN [VMIS-kNN-no-opt I VMIS-kNN
£ 810 —
= O
§ ‘€ 10
T
100 250 500 1000

sample size m

Figure 3.3: (Top) Median and 90th percentile of the computation time per session
in microseconds (log-scale) for different VMIS-kNN implementations; (Bottom) Mi-
crobenchmark runtimes in microseconds (log-scale) for VMIS-kNN vs. VS-kNN on
the ecom-1m dataset with k = 100.

in microseconds for each of our variants. The results are consistent across all values
of m: We find that both VMIS-kNN and VMIS-kNN-no-opt drastically outperform
the VS-kNN baseline by a factor of three to five. We attribute this observation to the
optimised access patterns in the index of VMIS-kNN, which allows us to avoid costly
set intersection operations, and the minimisation of intermediate results with our heap
data structures (Section 3.4). We furthermore observe that VMIS-kNN consistently
outperforms VMIS-kNN-no-opt by 6% to 12% which validates our micro optimisations
such as early stopping and leveraging octonary heaps instead of binary heaps.

3.6.2 Serenade

Next, we evaluate our Serenade system. We validate our implementation choices, run a
load test for the system, and finally present the results from a three week long A/B test
on the live platform.

Validation of Implementation Choices

We present an offline experiment which focuses on the performance of our index-
based VMIS-KNN approach. We compare our Rust-based implementation against
implementations in other programming languages and computational engines to validate
our design choice of a custom implementation in Rust. Note that we provide the source
code for the alternative implementations in our experiment repository as well.

Experimental setup. We compare our Rust-based VMIS-kNN implementation against
four other implementations:

* VS-Py — a Python-based implementation of the original VS-kNN approach, based

36

3.6. Experimental Evaluation

on the reference code [116] from the original VS-kNN paper; we expect this
variant to be non-competitive as it is a mere research implementation;

e VMIS-Diff — an implementation of VMIS-kNN in Differential Dataflow [75],
which computes the recommendations incrementally via joins and aggregations;
this variant allows us to evaluate the benefits of an incremental similarity compu-
tation for growing sessions;

e VMIS-Java — an implementation of VMIS-kNN in Java, which stores the his-
torical session data in Java hashmaps; the purpose of this variant is to evaluate
the effects of not having full control over the memory management during the
similarity computation (and instead relying on a garbage collector);

e VMIS-SQL - an implementation of VMIS-kNN in SQL, which leverages the
embeddable analytical database engine DuckDB [88] in version 0.2.2; the purpose
of this variant is to evaluate whether a custom implementation of the approach
is necessary; we note that we found it very difficult to express the similarity
computation in plain SQL, as it required several deeply nested subqueries;

We ensure through evaluations on held-out data that all variants are correctly imple-
mented and provide equal predictive performance. We expose the historical session
data from our public and proprietary datasets to each of these baselines. Next, we ask
each implementation to sequentially compute next-item recommendations with a single
thread for the growing evolving sessions in the test set of each dataset, and measure
the prediction time in microseconds. We run each implementation on a n1-highmem-8
instance in the Google cloud with 50 gigabytes of RAM, and use m = 5000 and
k = 100 as hyperparameter settings.

Results and discussion. The top plot of Figure 3.3 illustrates the resulting runtimes
from our experiment for the different datasets and baseline implementations. Note that
we plot the median and 90th percentile (p90) of these runtimes on a logarithmic scale
in a single bar, where the lighter top part denotes the 90th percentile runtime. Our
VMIS-KNN implementation consistently outperforms all the baselines both in terms
of median and p90 runtime; it is more than two orders of magnitude faster than the
Python reference implementation, and more than one order of magnitude faster than the
differential dataflow implementation.

The second-best implementation is the Java baseline, which is still outperformed
by an order of magnitude for the 90th percentile runtime on all datasets except the
small ecom-1m dataset. When we look at the results for larger datasets, we additionally
observe that several baselines start to encounter memory issues (even though they can
use 50 gigabytes of RAM), and fail to complete the computation. This happens for the
Python implementation (which relies on pandas dataframes internally), for the SQL
implementation as well as for the Java variant.

Note that our Serenade implementation provides a p90 runtime of at most 1.7
milliseconds on all datasets. We attribute this to the fact that our implementation
allows us to carefully control memory allocation and to avoid the materialisation of
large intermediate results (such as the complete set of item matches with the historical
sessions). We observe that the differential implementation always manages to compute

37

3. Low-Latency Session-Based Recommendation

v 2
45 S 1000
34
o 5 500
o
—~300
° 5()00 —— Serving machine 1 Serving machine 2
o
S 2100 e A T e
3 — —
0
aﬁ‘)o — p99.5 p90 — p75
g gD
s ET e T T~
- 5
21:30 22:30 23:30
time

Figure 3.4: Requests per second, core usage in percent and response latency during a
load test with more than 1,000 requests per second. Serenade handles about 500 requests
per second per core with a 90th percentile latency of less than seven milliseconds.

results; however, the incremental computation does not pay off runtime-wise, because
differential dataflow has to index all intermediate results due to its support for updates
in response to input data changes (which is not required in our use case). Finally, we
find the SQL implementation to be non-competitive and to not scale to large datasets,
which we attribute to the large intermediates from the nested subqueries, and which
confirms that a custom implementation of VMIS-kNN is more suitable to scale to large
datasets.

Offline Load Test

We finally run a load test in our staging environment to validate that Serenade is able to
handle peak production workloads.

Experimental setup. We leverage a setup that resembles our production environment:
Serenade’s index is built from the last 180 days of browsing activities, covering 6.5
million distinct items. We deploy Serenade on two Kubernetes pods, running on shared
core n1-standard-16 instances in the Google Cloud, where each pod gets provisioned
with three cores from an Intel Xeon CPU @ 2.00GHz and 16 GB of RAM.

We generate a simulated load of more than 1,000 requests per second by replaying
historical traffic via a load generator application for several hours. We measure the
response latency of Serenade as well as the core usage on the machines.

Results and discussion. Figure 3.4 plots the resulting response latency and core usage
for our load test. We find that Serenade gracefully handles the load of more than 1,000
requests per second, and responds within less than 7 milliseconds in 90 percent of
the cases (p90) and in less than 15 milliseconds in 99.5% of the cases (p99.5). Each
instance uses only one of the three provisioned cores for most of the time. We base our
production experiments in the following on the outcomes of this load test.

38

3.6. Experimental Evaluation

Online Evaluation in an A/B Test

We present results from a three week long online A/B test on our e-commerce platform,
where we compared two variants of Serenade against our existing legacy recommen-
dation system (referred to as legacy), which applies a variant of classic item-to-item
collaborative filtering [98].

Experimental setup. We show Serenade’s recommendations on the product detail
page of our e-commerce platform, in a slot titled ‘other customers also viewed’. We
evaluate two different variants of Serenade: the first variant serenade-hist leverages the
last two items from each evolving session to compute predictions, while the second
variant serenade-recent only leverages the most recent item. We set the hyperparameters
of VS-kNN to m = 500 and k£ = 500, which provide a reasonable trade-off between
prediction quality in offline experiments and index size. We run the test for 21 days,
in which more than 45 million randomly assigned user sessions were subjected to the
recommendations from our variants. We ensure that both the legacy system and Serenade
consume the same click data as input at the same time (once per night). Serenade builds
its index from the last 180 days of data; after filtering, its daily training data consists of
around 111 million sessions with 582 million distinct user-item interactions and contains
6.5M distinct items. We measure the request load to the recommendation system, the
response latency (as experienced from the shop frontend) and several business-specific
engagement metrics.

Results and discussion. We discuss the systems- and business-specific outcomes of
our A/B test.

Response latency. Our most important systems-related metric is the response latency.
Our recommendation systems have to adhere to a strict SLA of responding in less than
50 milliseconds, otherwise requests would be discarded. Recent research also indicates
that fast response times help with the acceptance of recommendations in general [S1].
Our system architecture and implementation decisions (Section 3.5) are tailored to
allow for low latency responses of our system. This is confirmed by the experimental
results illustrated in Figure 3.5, which plots different percentiles of the response latency
distribution over the three weeks of our A/B test, and shows the load of the system (in
terms of the number of requests per second) for comparison. The request load varies
between 200 and 600 requests per second over the day. We find that Serenade’s response
latencies are very low, the 90th percentile is consistenly around 5 milliseconds, and even
the 99.5th percentile is below 10 milliseconds in the majority of cases. This confirms
that Serenade exhibits a consistently fast, and stable low-latency response behavior.

CPU usage and operational cost. We deploy Serenade analogously to the setup from
the load test in Section 3.6.2: We leverage two Kubernetes pods, running on shared
core n1-standard-16 instances in the Google Cloud, where each pod gets provisioned
with cores of an Intel Xeon CPU @ 2.00GHz and 16 GB of RAM. Even with such low
resources, Serenade is able to gracefully handle the request workload. We reconfirm the
findings from our load test (Section 3.6.2), as Serenade only exhibits a core usage of
less than 36% (less than one core) in cases with over 500 requests per second. We also
observe a well-behaved linear scaling (with a gentle slope) of the core usage with the

39

3. Low-Latency Session-Based Recommendation

600

400

requests/sec

— p99.5 p90 — p75

P PO SR P AD AN AL 4D AKX AD A0 AT A 4O 0 9N AL 9D qk 4H 90
day of the month
Figure 3.5: Requests per second and response latency per hour during our three week
long A/B test on the live platform. Serenade responds within less than seven milliseconds
in 90% of the cases, even for peak times with more than 600 requests per second.

number of requests per second.

Customer engagement. Systems-related metrics are important for successfully operating
a recommendation system, however in the end the recommendation system has to
perform well in business-related metrics to be valuable for an e-commerce platform. As
VMIS-kNN outperforms other approaches in offline evaluations (Section 3.6.1), we are
interested to determine how this behavior translates to customer engagement in our A/B
test. For that, we measure a conversion-related business metric for the engagement with
recommendations on the product detail page.

We find that our session-based recommendations drastically increase this engage-
ment metric for the slot on the product detail page. Serenade-hist exhibits a 2.85%
increase in the business metric (compared to legacy), and serenade-recent even shows
an increase of 5.72% (both findings are statistically significant). When we control for
the overall impact on a site-wide level however, we find that serenade-recent exhibits a
cannibalising behavior, as it drives down the engagement of other slots on the product
detail page (e.g., the ‘often bought together’ slot). We do not observe this effect for
serenade-hist though, rendering it the preferred variant.

Summary. We find that Serenade easily handles the load of up to 600 requests per sec-
ond during our A/B test and consistently generates its recommendations with very low
response latency (less than seven milliseconds in the 90th percentile). We furthermore
find that the session-based recommendations produced by VMIS-KNN significantly
increase customer engagement compared to classical item-to-item recommendations
(as produced by our legacy system). We would like to highlight that, to the best of
our knowledge, we are the first to provide empirical evidence that the superior offline
performance of VS-kNN/VMIS-kNN also translates to superior performance in terms
of business metrics in a live, real recommendation system. This is often not the case for
academic recommendation approaches, the winning solution of the highly popularised

40

3.7. Learnings & Conclusion

Netflix prize, for example, never went into production [4].

3.7 Learnings & Conclusion

In this chapter we presented our nearest neighbor approach VMIS-kNN as well as
the design and implementation of our scalable session-based recommendation system
Serenade. We conducted an extensive offline evaluation of VMIS-kNN and Serenade
to validate our design decisions, and detailed results on the latency, throughput, and
predictive performance of our recommendation system from an online A/B test with up
to 600 requests per second for 6.5 million distinct items on more than 45 million user
sessions on Bol’s e-commerce platform.

In addition to the contributions listed in Section 3.1, we would like to highlight
Serenade’s low operational cost: We run two instances with three cores each in the
Google cloud (provisioned on shared core n1-standard-16 instances) for the serving
pods, and require 40 minutes on 75 machines of type n1-highmem-8 for creating the
index with Spark every day, which results in a total operational cost of less than 30
euros per day for Serenade. As discussed in Section 3.6.2, Serenade only leverages one
of the three cores on each instance, and we only provision the other cores to be prepared
for peak loads, e.g., during denial-of-service attacks.

This low cost becomes especially attractive when we compare it with the high cost
to train deep learning models. As an example, a neural learning-to-rank model on our
platform incurs at least an order of magnitude more costs to be operated on a daily
basis, and additionally requires GPU machines for training, which are often a contested
resource in the cloud.

In future work, we intend to explore whether we can run our similarity computations
on a compressed version of the index, and whether we can incrementally maintain the
index with a system such as Differential Dataflow [75].

In the next chapter, we extend our exploration to address the practical challenges
of evaluating the inference performance of SBR models at scale, focusing on identify-
ing high-performing and cost-efficient solutions for diverse e-commerce deployment
configurations.

41

Etude — Evaluating the Inference Latency
of Session-Based Recommendation

Models at Scale

In this chapter, we transition from our work on scaling the Session-Based Recommen-
dation (SBR) algorithm VMIS-kNN, which is successfully used in production, to the
exploration of our benchmarking framework ETUDE. While VMIS-kNN addressed
scalable production-ready recommendations, ETUDE tackles a broader, equally critical
challenge in SBR: the efficiency evaluation and deployment of diverse SBR models
across different e-commerce use-cases.

Our next research question focuses on:

RQ3 How can we automatically evaluate the inference performance of SBR models
under different deployment options?

We answer this question by investigating state-of-the-art neural methods for session-
based recommendations from different neural architectures. We design and implement
ETUDE, an end-to-end benchmarking framework that enables data scientists to au-
tomatically evaluate the inference performance of SBR models under declaratively
specified deployment options. ETUDE facilitates this evaluation by allowing users to
specify workload statistics, hardware configurations, as well as latency and throughput
constraints. Based on these inputs, the framework automatically deploys and executes
inference benchmarks in Kubernetes using a synthetically generated click workload.
ETUDE then provides detailed throughput and latency measurements, serving as a foun-
dation to identify feasible and cost-effective deployment strategies. We demonstrate
the capabilities of ETUDE through an experimental study involving ten SBR models
under realistic and challenging settings inspired by real-world workloads at the large
European e-commerce platform Bol.

The study in this chapter evaluates performance in various e-commerce use cases for
the different brands within Ahold Delhaize,' including grocery shopping and broader

This chapter was published as B. Kersbergen, O. Sprangers, F. Kootte, S. Guha, M. de Rijke, and
S. Schelter. Etude — Evaluating the inference latency of session-based recommendation models at scale. In
2024 IEEE 40th International Conference on Data Engineering (ICDE), pages 5177-5183, Los Alamitos,
CA, USA, May 2024. IEEE Computer Society. doi: 10.1109/ICDE60146.2024.00389.
Thttps://www.aholddelhaize.com/

43

https://www.aholddelhaize.com/

4. Evaluating the Inference Latency of Session-Based Recommendation

online retail platforms. We identify optimal deployment options in terms of models
and cloud instance types, highlighting their trade-offs in performance and cost. Addi-
tionally, our analysis uncovers critical performance bottlenecks in existing solutions,
such as the open-source TorchServe inference server from the PyTorch ecosystem and
implementations of four SBR models in the open-source RecBole library. We publicly
release the ETUDE framework along with our experimental results.

4.1 Introduction

Session-based recommendation (SBR) targets a core scenario in e-commerce. Given a
sequence of interactions of a visitor with a selection of items, we want to recommend the
next item(s) of interest to interact with [25, 42, 49, 63, 67, 70, 93, 108, 109, 120, 123].
This machine learning problem is crucial for large e-commerce platforms which offer
millions of items such as Bol [51, 52].

Challenges in deploying session-based recommendation systems. Scaling session-
based recommendation systems is a difficult undertaking, because the input space
(sequences of item interactions) for the recommendation system is exponentially large,
which renders it impractical to precompute recommendations offline and serve them
from a data store. Instead, session-based recommendations have to interactively react to
changes in the ongoing user sessions, and compute next item recommendations with
low latency [5, 51]. At Bol, for example, an SBR model has to handle at least 1,000
requests per second with a 90-th percentile latency of at most 50 milliseconds [51, 52].
Furthermore, deploying an SBR system often involves choosing from a large number of
models [25, 42, 49, 63, 67, 93, 108, 109, 120, 123], implemented in academic libraries
like RecBole [128], which lack support for model deployment [89] and inference
optimisations [90].

For these reasons, it is currently very difficult for companies to deploy SBR models
in challenging production scenarios. Data scientists typically have to prototype different
deployment options in collaboration with devops teams, in order to manually evaluate a
model’s inference performance on a per use-case basis. This is often a tedious process
lasting several weeks, which eats up the time of hard-to-hire experts. Furthermore, this
process may have to be repeated multiple times in retail corporations such as Ahold
Delhaize,” which have different brands and platforms in different countries, with varying
product catalogs and visitor numbers.

Existing benchmarks are not designed for such industry scenarios unfortunately.
The Session-Rec [71] benchmark, for example, measures prediction quality only, with
Python-based single-threaded evaluation, and can therefore not assess real-world in-
ference performance. Systems-focused benchmarks like MLPerf [91] are designed to
evaluate the performance of inference systems, but not to help data scientists with the
choice of models and deployment options in an end-to-end cloud setup.

The ETUDE benchmarking framework. In order to address the issues outlined
above, we present the ETUDE benchmarking framework (Section 4.2). ETUDE allows

2 Ahold Delhaize is an international retail group composed of nineteen companies located across the United
States, Europe and Indonesia.

44

4.1. Introduction

Load Generator
Synthetic Clicks
Generator

I!i!%i

Experiment Logs

Recommendation
Requests

spec {
model: “gs://..//grudrec.bin",
catalog_size: 10_000_000,
device_type: nvidia-tesla-t4,
target_rps: 1_000, .. }

kubernetes

\ J

Figure 4.1: High-level overview of ETUDE: Data scientists can automatically evaluate
the inference performance of SBR models under declaratively specified deployment
options in terms of hardware, workload statistics, as well as latency and throughput
constraints.

Model Repository

data scientists to automatically evaluate the inference performance of SBR models
under different deployment options. Data scientists provide a set of trained SBR
models and declaratively specify statistics of the underlying product catalog, hardware
options for deployment (e.g., the type of GPU to use), together with latency and
throughput constraints. Based on this, ETUDE automatically deploys and runs an
inference benchmark in Kubernetes with a synthetically generated click workload, and
provides the data scientists with measurements on throughput and latency, as a basis for
deciding on feasible and cost-efficient deployment options.

We discuss the design of ETUDE in Section 4.2, including its synthetic workload
generator, its backpressure-aware load generator and our Rust-based inference server.
We showcase ETUDE in Section 4.3, where we evaluate ten recently proposed neural
SBR models with different deployment options (CPU/GPU inference, small/large
product catalogs, just-in-time-optimisation of the underlying models) in challenging
settings resembling real-world workloads encountered at Bol.

Contributions. Our contributions in this chapter are as follows:

* We detail the design of our automated end-to-end SBR model benchmarking
framework ETUDE (Section 4.2).

* We present an experimental study for ten different SBR models in challenging
settings resembling real-world workloads encountered at Bol. We determine
performant and cost-efficient deployment options in terms of models and cloud
instance types for a variety of online shopping use cases (ranging from grocery
shopping to large e-commerce platforms) in Section 4.3.

* We identify severe performance bottlenecks in the open source TorchServe infer-
ence server from the PyTorch ecosystem and in the implementations of four SBR
models from the open source RecBole library (Section 4.3).

45

4. Evaluating the Inference Latency of Session-Based Recommendation

* We make the source code of ETUDE and our experimental results available at
https://github.com/bkersbergen/etudelib.

4.2 The Etude Benchmarking Framework

Design goals. We design ETUDE to address the previously outlined challenges. We
assume that a data scientist (who is typically an ML expert, but not an expert in systems
or devops) wants to assess whether their SBR model can be deployed in production,
and what setup (in terms of the number and type of machines) is required to adhere
to the latency and throughput constraints of their company. As illustrated in Figure
4.1, ETUDE helps the data scientist to automate and accelerate this process. Our
framework enables fully automated benchmarking, where the data scientist only needs
to provide their model and declaratively specifies statistics of the underlying product
catalog, hardware options for deployment (e.g., the type of GPU to use), together with
latency and throughput constraints. Thereby, ETUDE reduces time-to-deployment and
experimentation cost for industry practitioners. Note that ETUDE only measures the
inference performance of a model, not its prediction quality; we assume that the data
scientist already evaluates the prediction quality during the model design phase.

Supported models. In general, ETUDE is compatible with any SBR model implemented
in PyTorch [82]. For this chapter, we discuss ten different neural SBR methods, as im-
plemented in the open source RecBole library [128]. These include two recursive neural
network-based methods: GRU4Rec [109], which utilises GRU neural networks with
gating mechanisms for long-term dependencies in item interactions, and RepeatNet [93],
which employs an encoder-decoder architecture with a repeat-explore mechanism.

Furthermore, we include two graph neural network-based methods: GC-SAN [123],
which uses graph contextualised self-attention for session representation and SR-
GNN [120], which combines graph models to predict user actions based on long-term
preferences and current interests.

We use three attention-based methods: NARM [63], which employs a hybrid
encoder with attention to model sequential behavior, SINE [108], which introduces
sparse-interest embeddings for session recommendations, and STAMP [67], which
captures short-term attention and memory using gated self-attention.

Finally, we also use three transformer-based methods: LightSANs [25], which uses
transformers on session item embeddings for sequential recommendations, CORE [42],
which ensures consistent session representations via weighted sum item embeddings,
and SASRec [49], a self-attention-based recommendation model assigning weights to
previous items in sessions.

Time complexities for inference. We derive the asymptotic time complexities for
inference with the models. These complexities depend on common hyperparameters,
such as the catalog size C' and the number of items to recommend k. Additionally,
they are influenced by model-specific hyperparameters, such as the hidden size for
recursive neural networks or the embedding dimension of transformers and graph
neural networks, to which we collectively refer as d. In a typical SBR scenario with a
relatively short session length, the asymptotic complexity for inference with all models

46

https://github.com/bkersbergen/etudelib

4.2. The Etude Benchmarking Framework

Algorithm 4 Synthetic workload generation from the marginal statistics of a real
clicklog.

1: function GENERATE_SYNTHETIC_SESSIONS(C, N, ay, a)
2: Input: catalog size C, number of clicks IV, exponents o; and « for the

3: distribution of session lengths and click counts.

4: Output: Synthetic sessions Q.

5: Q<0

6: n,s,t <0

7: I <+ sample C click counts from power law dist. with exponent ¢

8: while n < N do

9: s+s+1 > increment session identifier
10: | < sample session length from power law dist. with exponent o
11: n<<n-+l > increment number of clicks generated
12: for O to1do > Generate [clicks
13: t—t+1

14: 1 <— sample item id from the empirical CDF of I > Choose item
15: Q <+~ QU (s,i,t) > Add synthetic click on item 7 in session s
return Q

is O (C(d+logk)), despite the different neural architectures. This is because all
models conduct a maximum inner product search for the top-k similar items in the
d-dimensional learned vector representations of all C' items within the catalog. The
embedding dimension d is typically chosen heuristically based on the value of C' and k
is set to a small value, which means that the inference time is dominated by the catalog
size C' across all models.

Synthetic session generation. A design goal of ETUDE is to enable load testing and
benchmarking without having to replay sensitive real-world click data. Therefore, we
run experiments with synthetic sessions, which preserve key statistical properties of
the underlying workload. Users only have to provide two statistics: the exponent o
of a power law distribution fitted to the distribution of session lengths in the click log,
and the exponent . of a powerlaw distribution fitted to the distribution of click counts.
These statistics can be estimated once from a real click log and reused for experiments
later.

We detail how to generate N synthetic clicks for a catalog with C items based
on these exponents in Algorithm 4. For each synthetic session, we first sample a
length [from a power law distribution with exponent «; (Line 10), and subsequently
select [items via inverse transform sampling (Line 14) from the empirical cumulative
distribution (CDF) of C click counts generated upfront by sampling from a power
law distribution with exponent «. (Line 7). This algorithm is fast enough for online
generation (our implementation is able to generate over one million clicks per second
on a single core for a catalog size C' of ten million items).

Load generator. Our goal is to measure the latency of a deployed model for a given
target throughput (in terms of requests per second). However, ETUDE should still
provide insightful results in situations where the model cannot handle the desired
throughput (and for example times out the majority of requests). Therefore, we design a
custom load generator for ETUDE, which slowly ramps up the load to a specified target
throughput while keeping track of back-pressure. It will refrain from sending more

47

4. Evaluating the Inference Latency of Session-Based Recommendation

Algorithm 5 Backpressure-aware load generator, which replays the synthetic sessions
@ for a target throughput » with a ramp-up over the duration d.

1: function GENERATE_LOAD(r, d, Q)

2: t,p<+0 > Tick counter and atomic counter for pending requests
3: for r. < TIMEPROP_RAMPUP(r, d) do > Main tick loop
4: terminate in case deadline d reached

S: t+—t+1

6: fori < 0...rc.do > Request generation loop
7: terminate in case deadline d reached

8: while p > r. do > Backpressure handling
9: if no time left for current tick ¢
10: gotonexttickt + 1
11: wait 1 millisecond
12: if no time left for current tick ¢
13: gotonexttickt + 1
14: SCHEDULE_REQUEST-ASYNC(p, Q)
15: d; < milliseconds till next tick
16: wait for d¢ /(r —) milliseconds > Evenly spread out requests
17: wait until next tick ¢t 4 1

work once too much back-pressure is built up, which allows us to gracefully shutdown
experiments in such cases and determine the throughput threshold where a model fails
to handle the load.

As detailed in Algorithm 5, the load generator ramps up the load to a target through-
put over the timespan d, while replaying the synthetic sessions (). The load generator
operates in “ticks” of one second and keeps track of the current number of pending
requests. The main loop to handle a single tick starts in Line 3. In each tick, the current
number 7. of requests to send per second is ramped up by the TIMEPROP_RAMPUP
function, proportionally to the time spent with respect to the desired benchmark duration
d, so that we reach the target throughput r eventually. Requests replay clicks from the
synthetic session log (), and are sent asynchronously (Line 14) and dynamically spread
out over the duration of a tick (Line 16). During the request generation loop, the count
of currently pending requests p is used to handle back-pressure: if this count reaches
the current throughput target (p > 7.), the generator pauses for a millisecond to wait for
the load to be handled by the server (Lines 9 and 12). Note that p is decreased when
responses are received asynchronously (not shown in the pseudo code).

We implement Algorithm 5 in Java, using the asynchronous HTTP client from
Apache HttpComponents 5.2.1 and integrate our synthetic clicklog generation. Our
implementation additionally ensures that the load generator respects the order of the
sessions, e.g., it will only send the next interaction for a session if a response for the
previous interaction was received.

Inference server. We focus on efficiently serving PyTorch [82] models in ETUDE,
which is the implementation framework of choice for the vast majority of state-of-the-
art SBR models [128]. We spent several weeks evaluating the open source inference
server TorchServe [112] for PyTorch models, which unfortunately fails to satisfy our
latency and performance requirements. We experienced severe performance issues
with TorchServe, which we attribute to the overhead of using several Python processes,

48

4.3. Experimental Study

orchestrated by a Java frontend. We experimentally validate this finding in Section 4.3.1,
where we showcase that TorchServe fails to handle 1,000 requests/second efficiently
even if no model inference is performed.

As a consequence, we implement our own light-weight inference server for ETUDE
in Rust, based on Actix [2], a high-performance web server leveraging non-blocking
IO, the Rust bindings [111] for the C++ API of PyTorch, and a plugin enabling request
batching for GPU inference [117]. Our inference server can deploy serialised PyTorch
models from Google storage buckets and serve them with CPU or GPU inference.
Furthermore, it allows users to configure the number of worker threads and details of the
request batching. As validated in Section 4.3.1, the latency overhead of this inference
server is extremely low.

Benchmark execution. We detail how to concretely execute benchmark experiments
with ETUDE. We automate the cloud infrastructure management via a make infra
command, which provisions and configures essential components such as a Kubernetes
cluster, Google Storage and the addition of service accounts required for deployments.
Importantly, this setup is a one-time operation, which can be reused for multiple
experiments.

Experiment deployment and execution. The definition and execution of a single ex-
periment proceeds as follows. ETUDE users declaratively specify the model(s) to
deploy and the type of hardware to use. Furthermore, they specify the catalog size
C, the statistics for click generation and the target throughput to which the load gen-
erator should ramp up. Subsequently, the execution is triggered via the command
make run_deployed_benchmark. ETUDE will then deploy the model onto a dedicated
machine in Kubernetes. Once the model deployment is finished (determined via Ku-
bernetes’s readiness probes), a ClusterIP service interface is deployed for allowing
access to the serving machine. Next, the load generator is deployed on another ma-
chine, from which it sends the corresponding recommendation requests to the model
inference server via the service interface. The load generator measures the end-to-end
response latencies for its recommendation requests and the inference server additionally
communicates metrics like the inference duration via HTTP response headers. The
observed measurements are written to a Google storage bucket upon termination of the
experiment.

4.3 Experimental Study

We validate our design decisions and showcase how ETUDE can be used to determine
performant and cost-efficient deployment options for a variety of e-commerce scenarios.

If not declared otherwise, we use the following settings. We run our experiments in
the Google Cloud Platform (GCP) via the Google Kubernetes Engine v1.27.3-gke.100,
operating in Autopilot mode with Google Cloud SDK 442.0.0. We leverage general
purpose e2 instances [33] with 5.5 vCPUs from an Intel Xeon CPU@2.20GHz and 32
GB RAM. For the GPU experiments, we either use an NVidia-Tesla-T4 with 16GB
RAM attached to an e2 instance or a preconfigured instance with an NVidia-Tesla-A100
with 40GB GPU memory, 12 vCPUs and 85GB of RAM.

49

4. Evaluating the Inference Latency of Session-Based Recommendation

_g) —— TorchServe T 950
O 7K 2 . £ Z20U7
g™ 5500{ — Actix z
% 5004 E g
& 2501 £ g

0- 04 01

Figure 4.2: Infrastructure test for answering 1,000 requests/s without model inference.
TorchServe already fails at handling “empty” requests efficiently.

We choose the embedding dimensions of the models via the common heuristic of
rounding up the fourth root of the catalog size C' [35] to the nearest power of two (which
is in line with the original embedding sizes used in the corresponding research papers),
and randomly initialise the weights of the SBR models (which need not be trained in
order to measure inference performance). For synthetic session generation, we leverage
marginal statistics from a real Bol click log. On our inference server, we apply request
batching for GPUs for up to 1,024 requests, and empty the underlying buffer every two
milliseconds. We make our code and experimental results available.’

4.3.1 Validation of Design Choices

First, we validate our design choice of leveraging an Actix-based Rust runtime instead
of the open source TorchServe project as serving engine.

Experimental setup. In order to measure the serving performance of TorchServe
independent of the model inference overhead, we deploy TorchServe on a 2 vCPU e2
machine with 2GB of memory, and implement a Python model that returns a empty
response and does not conduct any computation. Next, we configure our load generator
to ramp up to 1,000 requests per second over the duration of ten minutes, and measure
the response latencies. We deploy our Actix-based inference server analogously and
also make it return a static answer.

Results and discussion. We plot the results of our experiment in Figure 4.2. The load
ramps up to 1,000 requests per second over 10 minutes, and we observe early on that
TorchServe cannot keep up with the load and starts to return a large number of HTTP
errors (due to reaching the internal timeout of 100ms). It handles the remaining requests
with a p90 latency between 100 and 200ms. Our Actix-based inference server easily
handles the load with a p90 latency of around one millisecond for serving the static
content and does not throw any HTTP errors. These results are a strong indication
that TorchServe’s design causes severe latency overheads and that it is not suitable for
low-latency, high throughput use cases like session-based recommendation. This insight
is further supported by the documentation on benchmarking and tuning TorchServe,
which only uses workloads with a small number of requests (1,000 in total) and low
concurrency (10 requests at the same time) [86, 105].

We also run a validation experiment for the synthetic click generation, where we
compare the latency measurements achieved by replaying a real click log from Bol

3https://github.com/bkersbergen/etudelib/blob/main/experiments.md

50

https://github.com/bkersbergen/etudelib/blob/main/experiments.md

4.3. Experimental Study

SASRec

10001

1001

101

1.

10k 100k Im 10m10k 100k Im 10m
catalog size C catalog size C

p90 latency
[ms]

--+-- Eager mode (CPU) —&— JIT optimisation (CPU)
--+-- Eager mode (GPU-T4) —&— JIT optimisation (GPU-T4)

Figure 4.3: Microbenchmark results confirming the dependency of the inference latency
on the catalog size and the benefits of applying PyTorch’s JIT optimisations.

to the measurements achieved when using a synthetic workload generated based on
statistics from the real click log. We find that the achieved latencies resemble each other
closely.

4.3.2 Micro-Benchmark

We run a micro-benchmark to confirm our theoretical insight about the impact of the
catalog size on prediction latency, the potential of accelerator hardware and the benefits
of PyTorch’s just-in-time (JIT) optimisation [87].

Experimental setup. We conduct our micro-benchmark on a single machine with
synthetic click data generated according to the marginal statistics of session lengths
from Bol and varying catalog sizes. We send recommendation requests in a serial
manner (one request after another, waiting for model responses), measure the prediction
time and report the p90 latency. We repeat the experiment with two different instances
(CPU and GPU-T4), different execution types (eager execution without optimisation and
JIT-optimised versions of the models) and catalog sizes of 10,000, 100,000, 1,000,000,
and 10,000,000 distinct items.

Results and discussion. We observed similar results for all models and plot a selection
of the resulting prediction latencies in relation to the catalog sizes on a logarithmic scale
in Figure 4.3. The results confirm our theoretical analysis from Section 4.2 about the
strong dependence of the runtime on the catalog size, as we observe a linear scalability
of the prediction latency with the catalog size.

We see clear benefits of using GPUs for medium to large catalog sizes: starting
from catalogs with one million items, the prediction latency of the GPU is more than
an order of magnitude lower than the latencies achieved with CPUs only (and the
CPU already requires more than 50ms per prediction for catalogs with one million
items). Interestingly, this relation does not hold for small catalogs with 10,000 items,
in six out of ten cases, the CPU latency is on par with or lower than the GPU latency
here. Furthermore, we find that JIT-optimisation is always beneficial and never hurts
performance. We identify an issue with the LightSANs model implementation though,

51

4. Evaluating the Inference Latency of Session-Based Recommendation

Table 4.1: Cost-efficient deployment options for SBR models in varying e-commerce
scenarios with costs per month, derived from ETUDE measurements. Boldface indicates
the most cost-efficient deployment option for a scenario. Empty cells for models indicate
that they are not able to handle the target throughput with the given deployment option.

Scenarios Deployment Options SBR Models
& s 3
»
Instance Cost/ é‘{) @ § 5 %Q) $
Use case Catalog size Throughput type Number month © O < o & 5
Groceries 10,000 100 req/s CPU 1 $108 v v v v v v
(small) GPU-T4 1 $268 v v v v v v
Groceries 100,000 250 req/s CPU 1 $108 v v v v v v
(large) GPU-T4 1 $268 v v v v v v
Fashion 1,000,000 500 req/s CPU 3 $324 v v
GPU-T4 1 $268 v v v v Vv Y
GPU-A100 1 $2,008 v v v v v v
e-commerce 10,000,000 1,000 req/s GPU-T4 5 $1,343 v v v v v
GPU-A100 2 $4,017 vV v v v v v
Platform 20,000,000 1,000 req/s GPU-A100 3 $6,026 v v v v

which cannot be JIT-optimised by PyTorch due to dynamic code paths.

4 3.3 End-to-End Benchmark

Our goal for the final experiment is to showcase how ETUDE can identify well per-
forming models and cost-efficient deployment setups for a variety of e-commerce use
cases.

Experimental setup. We define five end-to-end use case scenarios, detailed in the
first three columns of Table 4.1: Grocery shopping (small), Grocery shopping (large),
Fashion, e-commerce, and Platform with catalog sizes from 10,000 up to 20,000,000
items and a target throughput ranging from 100 to 1,000 requests per second. These
scenarios are inspired by experiences from our various brands and use cases at Ahold
Delhaize, and are in line with publicly reported catalog sizes [3, 11, 127].

We conduct an end-to-end benchmark for the JIT-optimised variants of all ten models
in all scenarios with three different instance types (CPU, GPU-T4, and GPU-A100). We
ramp up the load to 1,000 requests per second over a period of ten minutes and measure
the response latency. We execute each configuration three times and ignore the runs
with the lowest and highest latencies, amounting to around four hundred runs.

Results and discussion. We plot detailed results for a selection of scenarios in Sec-
tion 4.4 and discuss various aspects of our findings.

Issues with selected SBR models. We encounter serious issues with three additional
SBR model implementations from the RecBole library [128]: SR-GNN, GC-SAN
and RepeatNet are not able to handle most of our use cases (or only handle them
with unacceptably low performance). We inspect their implementations to determine

52

4.3. Experimental Study

5 10001 ¥ W Groceries (large) - CPU
Q‘T] -
Ho 0 é}é«?/ et
32 © 5001
c:' 2501
0
‘é_'_' 1000 1
32 2 5001
E'' 2501

o

*g_'_‘ TOOQ) g-eveveeeeeeeseememmemssemssrisisininie] b

=Y 7504 e-Commerce - GPU-T4

o0 o

3 © 500

<= 2501 -/}*///é e-Commerce - GPU-A100

0 — : . e,
1000 1w o
7501 Platform - GPU-T4 Platform - GPU-A100

throughput
[rea/s]

5001
2501 d
[R —— —

1025 50 75 100 1025 50 75 100

p90 latency [ms] p90 latency [ms]
—— CORE —%¥— LightSANs SASRec —— STAMP
—— GCSAN —A— NARM —— SINE Target
—8— GRU4Rec —<— RepeatNet SR-GNN Throughput

Figure 4.4: Observed latency and throughput of different SBR models in deployment
scenarios with varying instances types.

the root causes for this finding. The RepeatNet model contains expensive tensor
multiplications of very sparse matrices which are implemented with dense operations
and representations (and therefore incur high overheads), and the SR-GNN and GC-SAN
models contain NumPy operations in their inference functions which require repeated
data transfers between CPU and GPU at inference time. We filed bug reports [97] for
these issues with the RecBole project.

Impact of catalog size and accelerator hardware. We observe that catalog sizes of
10,000 and 100,000 can be handled well with CPU instances only, where most models
achieve more than 500 requests per second at a 50ms p90 latency. The situation changes
for catalogs with one million items, where the performance of CPU instances drops
to around 200 milliseconds. At the same time, we see that this setup is easily handled
by instances with GPUs, where the T4 card already handles more than 700 requests
per second at a 5S0ms p90 latency. Only GPU instances are able to handle the load for
catalogs with 10 million items, and for the platform setting with 20 million items, the
high-end A100 cards are required.

Cost-efficient deployment options. The most performant setup may not necessarily be

53

4. Evaluating the Inference Latency of Session-Based Recommendation

the most cost-efficient one. The monthly costs (given a one year commitment) for
different machines vary [34]; a CPU instance, for example, costs $108.09 in GCP, an
instance with an additional T4 GPU costs $268.09 per month, and the instance with the
A100 GPU has a hefty price tag of $2,008.80. There may be cases where it is more
beneficial to linearly scale out the recommendation system with cheaper hardware than
to use a high-end device.

Such cost decisions can be made based on ETUDE’s experimental results: Table 4.1
lists the monthly costs for the best models per scenario for different setups. Note that
we applied a latency threshold of 50 milliseconds in the 90th quantile and ignored the
four models for which we found implementation errors. We find that (i) both grocery
shopping scenarios can be handled very cost-efficiently with a single CPU machine
for $108 per month (for all models); (ii) the specialised e-commerce scenario can be
handled with a single GPU-T4 instance (for all models) for $268 per month, and two
models (SASRec and STAMP) are also comparatively cheap to deploy with only CPUs
(at a cost of $324 per month); and (iii) the general e-commerce and platform scenario
require GPUs: the platform scenario with a large catalog of 20 million items can only
be efficiently handled with three high-end GPU-A100 instances at the high cost of
$6,026 per month. Interestingly, for the general e-commerce scenario, it is significantly
cheaper to deploy five GPU-T4 instances ($1,343) than to leverage two more powerful
GPU-A100 instances (for $4,017).

4.4 Conclusion

We presented ETUDE, a framework to automatically evaluate the inference performance
of SBR models under declaratively specified deployment options in terms of hardware,
workload statistics and latency and throughput constraints.

In the past, we have seen recommendation teams refrain from building online
Session-Based recommendation systems due to the outlined serving challenges. As a
consequence, they designed static recommendation systems with precomputed recom-
mendations for the last item of a session only, which often exhibit low prediction quality
due to the missing session context. ETUDE is currently helping such teams to reduce
risk, as they can test newly designed models early on challenging workloads, and to
improve their model implementations by identifying bugs which impact performance.

In the future, we plan to extend ETUDE with more inference runtimes such as
ONNX [10] or TensorRT [79] and to support additional cloud environments such
as Microsoft Azure or Amazon Web Services. Furthermore, we will explore the
incorporation of techniques to trade-off prediction quality with inference latency, such
as model quantisation [31] or approximate nearest neighbor search [48], as well as the
automatic choice of appropriate instance types for declaratively specified workloads.
Our findings also indicate that there is a need to design custom neural models for high
cardinality catalogs. This is evidenced by the enormous costs for deploying models on
catalogs with twenty million items, which can be handled much cheaper with non-neural
approaches [52].

In the next chapter, we shift our focus to the data aspect of recommendations,
exploring how Data Shapley values can be used to debug real-world interaction datasets

54

4.4. Conclusion

for sequential KNN-based recommendation systems in order to improve recommendation
quality.

55

Illoominate — Scalable Debugging of
Recommendation Data in e-Commerce

Modern e-commerce platforms offer millions of items to their customers. The challenge
of navigating such vast collections has led to the development of machine learning-
powered recommendation systems that help users find items that they might like. These
recommendation systems predict future interactions between users and products by
being trained on data about such interactions that were recorded in the past. Failures of
such systems can severely impact the user experience, such as recommending dangerous
items, and can often be directly attributed to issues present in the training data, also
called data errors. Unfortunately, given the massive scale of these datasets, the process
of identifying the data errors that have the most significant negative impact, also called
data debugging, can be prohibitively expensive.

In this chapter, we present ILLOOMINATE, a library for the scalable debugging of
interaction data for our recommendation systems at Bol, one of the largest European
e-commerce platforms. Our library assists data scientists in uncovering various data
errors via recent data importance algorithms and scales to datasets with millions of
interactions.

We therefore formulate our next research question:

RQ4 How can we efficiently compute Data Shapley values for sequential KNN-based
recommendation systems on real-world datasets with millions of datapoints?

We answer this question by designing the KMC-Shapley algorithm, a custom-tailored,
scalable variant of a recent Monte Carlo-based algorithm for estimating so-called
Data Shapley values. This is achieved by leveraging the special characteristics of our
KNN-based recommendation models in production.

Our next research question is:

RQ5 Are Data Shapley values helpful for debugging real-world interaction data in
sequential kNN-based recommendation systems?

We conduct an experimental evaluation of the efficiency and scalability of ILLOOM-
INATE on both public and proprietary datasets for session-based and next-basket rec-

This chapter is under submission as B. Kersbergen, O. Sprangers, B. Karlas, M. de Rijke, and S. Schelter.
Tlloominate — Scalable debugging of recommendation data in e-commerce. Under submission, 2025.

57

5. Scalable Debugging of Recommendation Data in e-Commerce

ommendation, and showcase its ability to reliably identify the most severe data errors
for each of these tasks. Moreover, we discuss various applications of our library on
click and purchase data from Bol. These applications include discovering dangerous
products and low-quality products, as well as increasing the ecological sustainability of
recommendations via data pruning.

5.1 Introduction

In recent years, online shopping has moved to e-commerce platforms, where millions
of items are offered by thousands of third-party sellers on centralised marketplaces.
Bol, one of Europe’s largest e-commerce platforms,' for example, features 42 million
products offered by more than 47,000 external partners to 25 million active users. The
challenge of navigating such vast collections has led to the development of recommen-
dation systems powered by machine learning (ML) [66], which help users find items
that they might like. Common tasks for recommendations on e-commerce platforms are
session-based recommendation [52, 70], where the goal is to predict the next item that
a user will click on, or next-basket recommendation [6, 43, 64], where the goal is to
predict the items in the next shopping basket purchased by a user.

Data errors impeding e-commerce recommendation systems. Real-world recommen-
dations are complex systems, operating on data that captures interactions between users
and products. The unpredictable nature of this data frequently produces data errors
that are the root cause of many system failures, e.g., the accidental recommendation of
dangerous items [14, 78], externally manipulated rankings [12], or third-party products
with low-quality metadata [7, 115]. Furthermore, the data collection process is exposed
to various sources of noise, e.g., “multi-journeys,” where a single user shops for multiple
things simultaneously (such as presents for family members of different age groups),
or “unnatural interaction patterns” caused by bots crawling the website to record the
product assortment and prices.

To make matters worse, as these issues are hard to anticipate upfront, they are
typically detected post-deployment after they have already damaged the user experience.
For example, we recently faced a situation where sensitive adult items were included
in the recommendations on product pages of children’s toys, due to the unexpected co-
occurrence of these types of products in some historical browsing sessions. This incident
prompted an urgent live patch of the system with custom filtering rules, followed by
the manual identification and removal of the session data in which these unwanted
co-occurrences appeared.

Data debugging via data importance. Preventing such predicaments requires a
principled data debugging process during which human experts work to identify data
errors and preemptively mitigate them. However, the scale of our training datasets
renders this process prohibitively expensive. One way forward would be to offer
systematic guidance highlighting the data points that are more likely to be causing
issues. As part of the recent data-centric initiative of the ML community [80], various
notions of data importance [32, 37, 50, 61, 118] have been proposed to quantify the

1 https://over.bol.com/en/about-bol/#facts-and-figures, accessed in November 2024.

58

https://over.bol.com/en/about-bol/#facts-and-figures

5.1. Introduction

impact of individual training data points on an ML model (see Section 5.3.1 for details).
The most prominent such notion is the Data Shapley value (DSV) [32], which has
already attracted considerable interest in the data management community [72] and has
been shown to be effective at certain data debugging tasks [47, 50].

However, prior work on evaluating the DSV for importance-driven data debugging
mainly focuses on classification tasks. To the best of our knowledge, no study has
evaluated its effectiveness when applied to recommendation tasks. Furthermore, current
approaches for overcoming the exponential complexity of computing the Shapley value
are not directly applicable to recommendation models. Some methods treat the entire
model as a black box [32, 61] which could only be feasible for datasets that are orders
of magnitude smaller than ours. Other methods make assumptions about the additivity
of model quality metrics [46, 50] that are not directly applicable to recommendation
systems. In this work, we take a step towards closing this gap and expanding the range
of possible scenarios that could benefit from principled data debugging approaches.
Specifically, we explore the following questions:

1. Can we efficiently compute Data Shapley values for recommendation systems on
real-world datasets with millions of interactions?

2. Are Data Shapley values helpful for debugging real-world interaction data in
recommendation systems?

Overview and contributions. We present ILLOOMINATE, a library for the scalable
computation of data importance for interaction data from our recommendation systems
at Bol (Section 5.4). ILLOOMINATE is implemented in Rust with a simple Python
frontend, scales to datasets with millions of interactions, and makes it easy for data
scientists to run data importance algorithms and leverage the results in downstream
applications.

In particular, we explore the potential of the Data Shapley value for debugging
real-world interaction data of our production recommendation system Serenade [52]
for session-based recommendation (presented at SIGMOD’22) and for next-basket
recommendation models [6, 43] deployed on European online grocery platforms of our
partner companies [114]. Apart from data debugging, we also show how to leverage data
importance to prune the training data of one of our recommendation systems to increase
the number of sustainable items in its predictions, without decreasing recommendation
quality.

In summary, in this chapter we provide the following contributions.

Contribution 1: Design of ILLOOMINATE (Section 5.4). We detail the design of our

library ILLOOMINATE for debugging large-scale recommendation data via data impor-
tance. We make our code available at https://github.com/bkersbergen/illoominate.

Contribution 2: KMC-Shapley algorithm (Section 5.5). We exploit the fact that our
recommendation systems are built on a special class of models, namely nearest neighbor
models for sequential recommendation, and that the interaction data in real-world
recommendation systems is extremely sparse. Building on these characteristics, we
design the KMC-Shapley algorithm, a custom-tailored, scalable variant of a recent

59

https://github.com/bkersbergen/illoominate

5. Scalable Debugging of Recommendation Data in e-Commerce

Monte Carlo-based algorithm for estimating the Data Shapley Value, and implement it
as part of our library.

Contribution 3: Experimental evaluation (Section 5.6). We conduct an experimental
evaluation of the efficiency and scalability of ILLOOMINATE on both public and pro-
prietary datasets with millions of interactions. Additionally, we adapt experiments
from academic papers to showcase that the DSV identifies impactful data points for
session-based and next-basket recommendation tasks.

Contribution 4: Discussion of Applications (Section 5.7). Finally, we discuss applica-
tions of ILLOOMINATE on click and purchase data from Bol. These applications include
identifying dangerous and low-quality products as well as improving of the ecological
sustainability of recommendations via data pruning. Furthermore, we provide initial
evidence that our computed DSVs are also meaningful for neural recommendation
models.

5.2 Related Work

To the best of our knowledge, we are the first to explore data importance for rec-
ommendations in e-commerce. We list related work across the areas underlying this
direction.

Recommendation systems. Recommendation systems [15, 16, 28, 36, 38, 73, 83,
94, 107, 124, 129, 131, 132] are an active area of research, with a close connection
to industry use cases [113, 119, 122]. A particular challenge is to translate academic
progress into deployable solutions at scale [13, 44, 51-53, 62].

Error detection for ML. Detecting errors in data is a core research direction in data
management [1, 65], and several approaches tailored to ML applications have been
proposed. Google TFX [84] and Deequ [100, 102] infer integrity constraints for ML
data based on data profiling, and follow-up approaches learn to validate ML data from
historically observed data partitions [92, 104]. HoloDetect [39] and Picket [68] detect
erroneous samples in classical supervised learning scenarios via few-shot learning and
self-supervised learning.

Data importance. Determining the importance of a data point for an ML model is
a core question in data-centric Al [37], with many applications in data debugging
and data selection. Prominent notions of data importance include the Data Shapley
value [32], and generalisations such as the Beta Shapley value [61] and the Data
Banzhaf value [118]. The efficient estimation of such data importance scores is an
active area of research with promising results for special classes of models such as KNN
classifiers [46], which can be used as a proxy for more expensive models. Datascope [50]
and ArgusEyes [103] use Data Shapley values to debug the outputs of ML pipelines,
while Gopher [85], Rain [27, 121] and follow-up work [22] leverage estimates of the
leave-one-out error computed via influence functions [55] for data debugging.

Besides ML-specific scenarios, there is a wide variety of applications of the Shapley
value in data management; see [72].

60

5.3. Background

5.3 Background

We introduce data importance and sequential recommendation as foundations for the
remainder of this chapter.

5.3.1 Data Importance

The goal of data importance (often also referred to as data valuation) is to quantify
the impact of each individual training data point on the quality of a machine learning
model [37]. Different notions of this importance [32, 61, 118] have been proposed,
which all rely on measuring the impact of excluding a given data point from the model’s
training data (or certain subsets of it). More formally, let D = {x, ..., X, } denote the
set of n training data points whose importance we want to compute. Furthermore, let the
utility function V (.S) measure the performance of a model trained on a subset S C D of
the training data. For example, V' might compute the recall of a recommendation model
on held-out data D,,,;. We discuss the two most prominent notions of data importance
here:

Leave-One-Out error (LOO). The simplest way to measure the importance of a data
point x; € D is its leave-one-out error, the change in utility V' when the data point x; is
excluded from the training data D:

V(D) = V(D {xi}). 5.1

While the LOOQ is easy to compute, it is empirically found to be highly noisy [61] and
typically outperformed by more complex notions of importance in its helpfulness for
downstream tasks [37].

Data Shapley value (DSV). Recently, the Data Shapley value (DSV) has been proposed
as an equitable way to measure the importance of training data points for a machine
learning model [32]. The DSV determines the “value” ¢; of each data point x; from the
data D based on the well-known Shapley value from game theory [60]:

1 n—1\""
== > }(S) V(SU{x:}) - V(S). (5.2)

n
SCD\{x;

The DSV measures the weighted average of the marginal contribution V(S U {x;}) —
V(S) of adding the data point x; to all 2/P1=1 subsets S of the training data D. The
DSV is challenging to compute, but has been shown to work well empirically, e.g., for
tasks like detecting mislabeled data [32, 50, 61, 103].

5.3.2 Sequential Recommendation

The general goal of sequential recommendation (SR) is to predict the next action
in a sequence of user actions; it subsumes many core recommendation tasks in e-
commerce. In session-based recommendation (SBR), the goal is to predict the next
product that a user browsing the website will visit, based on the sequence of already
visited products [40, 52, 70, 123]. In next-basket recommendation (NBR), the task is

61

5. Scalable Debugging of Recommendation Data in e-Commerce

Recommendation
model for generating
predictions

Interaction data D
(browsing sessions,
shopping carts, ...)

Data importance to identify
impactful and corrupted data

Recommendation Model

Retriever fret [| Item Scorer fored

Users .

purchasing items on the ’

e-commerce platform

Validation
data Dva

ltems

Data Importance
Collected Scores
interaction data

Evaluation of utility
on held-out data

Scalable variants of data
importance algorithms

Figure 5.1: Overview of ILLOOMINATE — our library operates on data originating
from interactions between customers and items on our e-commerce platform €, such
as browsing sessions or shopping baskets, which may contain various data issues @.
ILLOOMINATE computes data importance scores @ to identify impactful and potentially
corrupted data points. For that, we design efficient variants of common data importance
algorithms @, specialised to our recommendation systems, such that they scale to
millions of interactions. During the execution of these algorithms, various data subsets
are constructed and the utility of a KNN-based recommendation model @ trained on
these subsets is evaluated for held-out validation data @.

to predict the set of products that a user will purchase in their next shopping basket,
based on the sequence of already purchased shopping baskets from the past [43, 64]. A
variant of next-basket recommendation is within-basket recommendation [6], where a
given set of items is already in the current shopping basket.

Formally, we define SR as follows. Lets = |[co,...,c] denote a sequence of
interactions with items ¢ € Z. Such an interaction sequence may, for example, represent
clicks on product pages during a browsing session on a web platform or a shopping
basket purchased on an e-commerce platform. Given the history of interaction sequences
h, = [sy,...,s¥] for each user u € U, common tasks are to predict either the whole
next interaction sequence s;;, ; (€.g., the next shopping basket that a user will purchase)
or to predict the next item 4,1 of an evolving interaction sequence s;:_ | = [io, . . . , i¢]
(e.g., the next product a user will click on during a visit on the website). As output, SR
models predict a ranked list of items and the predictions are evaluated with common
rank-based metrics such as Mean Reciprocal Rank (MRR), Recall or Normalised
Discounted Cumulative Gain (NDCG) [8]. Note that scenarios without user information
are a special case of the general task outlined here.

In recent years, a set of nearest neighbor-based approaches to SR have been pro-
posed [6, 24, 29, 43, 52, 70]. These models, to which we refer as KNN-SR mod-
els, compute sparse representations of the user histories in the training data and use
them as a retrieval corpus at inference time. The recommendations for a query user
are based on the k& most similar retrieved neighbors. Despite their simplicity, such
KNN-based approaches to sequential recommendation provide state-of-the-art perfor-
mance [6, 26, 43, 45, 64] and are deployed in large-scale production scenarios with
millions of users [52, 114]. Our product recommendation system at Bol, which we
presented at SIGMOD’22 [52], also leverages such a model. We refer to Section 5.9.1
for details on the KNN-SR models that we use in production.

62

5.4. ILLOOMINATE

5.4 |LLOOMINATE

We detail the design of our library ILLOOMINATE for the scalable computation of data
importance for recommendation data.

Overview. Figure 5.1 details the high-level design of ILLOOMINATE — our library
operates on data originating from interactions between customers and items on our
e-commerce platform @), such as browsing sessions or shopping baskets, which may
contain various data issues @. [LLOOMINATE computes data importance scores € to
identify impactful and potentially corrupted data points. For that, we design efficient
variants of common data importance algorithms @, specialised to our recommendation
systems, such that they scale to millions of interactions. During the execution of the
data importance algorithms, various data subsets are constructed and the utility of a
KNN-based recommendation model @ trained on these subsets is evaluated for held-out
validation data @.

ILLOOMINATE is implemented in Rust, with a Python frontend to invoke it within
data science code. In order to compute data importance scores, users provide their
interaction data with a validation set, and specify the parameters of the recommendation
scenario. For example, potentially corrupted session data (with negative DSVs) can be
identified as follows:

import pandas as pd
import illoominate as ilm

sessions = pd.read_parquet(...)
validation = pd.read_parquet(...)

Data Shapley values for sessions

data_shapley_values = ilm.data_shapley_values(
train_df=sessions, validation_df=validation, model="vmis",
metric="mrr@20", params={"m":250, "k":250, "seed":42})

Problematic sessions with negative data shapley values
negative = data_shapley_values[data_shapley_values.score < 0.0]
corrupted_sessions = sessions.merge(negative, on="session_id")

Interaction data. Our library currently supports two types of interaction data: (i) brows-
ing sessions, consisting of a session identifier and a list of time-stamped clicks on items;
and (ii) purchase histories, consisting of a user identifier and a list of purchased shop-
ping baskets, each represented by a set of item identifiers. This data is provided in the
form of dataframes or CSV files, which follow a simple schema: for sessions, each line
represents a click with a session_id, item_id and timestamp; for purchase histories,
each line represents a purchase event with a user_id, basket_id and item_id.

Recommendation models. We specialise our library to KNN-SR models (Section 5.3),
as we run several of these models in production for session-based recommendation and
next-basket recommendation [52, 114]. An important design goal of our library is to
abstract from the concrete instantiation of a particular KNN-SR algorithm so that we
can implement data importance algorithms once and apply them to all models from the
KNN-SR family. In order to achieve this, we define an abstract computational model
capturing the general “mechanics” of KNN-SR algorithms. In the following, we discuss

63

5. Scalable Debugging of Recommendation Data in e-Commerce

the components of this computational model (which are instantiated differently for
different models).

Sparse representation of interaction histories. Each user’s interaction history h,, is
encoded as a sparse representation x,. Thereby, the training data of observed user
interactions is turned into a retrieval corpus D = {x,, | u € U}.

Retrieval-based inference. KNN-SR models consist of a retrieval function f;..; to query
the retrieval corpus D and a prediction function f,,..q to generate recommendations
based on the retrieved representations. At inference time, KNN-SR models compute
recommendations for a query user ¢ in two stages:

1. Retrieval — The k nearest neighbors x,,, . . ., X, for the query user representa-
tion x, are retrieved via f,.;(x4, D, k), according to a model-specific ranking
function.

2. Item scoring — The top items to recommend to user ¢ are computed via the predic-
tion function fpred(Xq, {Xay, - - -, Xax }). based on the query user representation
X4 and the retrieved representations Xq, , - - -, Xay -

We refer to Section 5.9.1 for details on the concrete mapping of our deployed KNN-SR
algorithms to this model. In our Rust code, we define the trait RetrievalBasedModel
for all recommendation algorithms in ILLOOMINATE based on the outlined compu-
tational model. We implement the VMIS-KNN [52] and TIFU-kNN [43] algorithms
accordingly.

Data importance. ILLOOMINATE currently supports computing data importance for
interaction data via Data Shapley values and leave-one-out errors (as detailed in Section
5.3.1). All data importance algorithms are implemented in a general way via a Rust trait
called Importance which is compatible with any recommendation model supporting
the previously defined RetrievalBasedModel trait. We also design a general trait for
utility functions and implement common ranking-based metrics in recommendation
systems such as Mean Reciprocal Rank (MRR), Normalised Discounted Cumulative
Gain (NDCG), Recall, Precision or HitRate [8]. Our design also allows users to
implement custom utility functions for their use cases.

5.5 KMC-Shapley

The main challenge for ILLOOMINATE is the scalable computation of Data Shapley
values for our recommendation systems. In the following, we discuss the underlying
scalability issues and detail the KMC-Shapley algorithm, which we design to address
them.

5.5.1 Scalability Issues

Unfortunately, computing exact Data Shapley values, as defined in Section 5.2, is
intractable in practice because the number of subsets to process is exponential in |D].

64

5.5. KMC-Shapley

Algorithm 6 TMC-Shapley algorithm as proposed in [32].

1: function TMC-SHAPLEY(D, V)

2 ¢:{¢1))¢n}<_0

3 while not converged do

4: 7 < random permutation of data points in D

5: Uprev < V([D)

6: forjcl...ndo > Iterate through permutation
7 if [V (D) — vprev| > performance tolerance > Truncation
8 S + set of data points before position j in 7

9: x; < data point at position j in
10: v+ V(SEU{x;}) > Retrain and evaluate model
11: @i < i + (v — Vprev) > Update DSV with marginal contribution
12: Uprev <— V
13: t <— number of permutations evaluated
14: ¢ %(;5 > Normalise by number of iterations

15: return Shapley values ¢ = {¢1,...,én}

Even worse, each subset .S to process requires the re-training and evaluation of the
underlying recommendation model.

TMC-Shapley. Computing the Data Shapley value ¢; for a data point x; € D can
be formulated as an expectation calculation problem: ¢; = E.i [V (S U {x;}) —
V(S};)], where II denotes the uniform distribution over all n! permutations of the data
points in D and 'S¢ is the set of all data points that come before x; in the permutation
« [32]. For this formulation, Ghorbani et al. [32] present the TMC-Shapley algorithm
(Algorithm 6), which conducts a Monte Carlo (MC) estimation of the Data Shapley
values.> TMC-Shapley repeatedly samples a permutation 7 from II, computes the
marginal contribution V' (S: U {x;}) — V(S%) of a data point x; over S% in Lines 10
and 11, and iterates through all n data points in the permutation (Line 6). Furthermore,
it applies a truncation technique, by stopping to compute marginal contributions once
the obtained utility is within a threshold of the utility value V(D) of the whole dataset
(Line 7). A convergence test is performed every 100 iterations by checking if the mean
absolute percentage deviation of the Shapley value for all data points is below a given
threshold.

Scalability issues in TMC-Shapley. Even Monte Carlo-based algorithms such as
TMC-Shapley are difficult to scale to larger datasets [61], as the number of models
to retrain and evaluate is still linear in the number of data points in D. This effort is
not feasible for large datasets and many modern models, which is exemplified by the
fact that the experiments in [32, 61] are conducted on hundreds of data points only and
do not even fully retrain models such as neural networks (where only the last layer is
retrained).

Another line of research details how to efficiently compute DSVs for KNN clas-
sifiers [46] (which can act as proxies for other models). This approach makes several
assumptions about the utility function that prevent it from being directly applicable to
KNN-based recommendation systems. Firstly, it assumes that the model quality metric

2Note that we base Algorithm 6 on the author’s actual code from https://github.com/amiratag/
DataShapley, which slightly differs from the formulation in their paper.

65

https://github.com/amiratag/DataShapley
https://github.com/amiratag/DataShapley

5. Scalable Debugging of Recommendation Data in e-Commerce

treats the contributions of the nearest neighbors independently, which is not the case for
ranking-based metrics used in recommendation systems. Secondly, its computational
efficiency bounds are derived for classification tasks with a limited number of class
labels, which is not the case in recommendation systems, which have to rank millions
of items.

5.5.2 Data and Model Characteristics in KNN-SR

Our KMC-Shapley algorithm is a specialised variant of TMC-Shapley, which skips
the expensive utility computation in cases where we already know that the marginal
contribution is zero. Before presenting the actual algorithm, we first discuss the data
and model characteristics in KNN-SR which enable us to do this.

Sparse retrieval. SR algorithms operate on interaction data from online platforms.
A common characteristic of these platforms is that they offer a wide selection of
items, while each user interacts only with a tiny fraction of the available items. For
example, the median session length in SBR datasets ranges from two to four clicks,
even in scenarios with more than a million distinct items [52], and shopping baskets
in NBR datasets contain less than ten items on average, even though there are tens of
thousands of distinct items available [43]. As a consequence, the resulting interaction
data is extremely sparse. To account for this, KNN-SR algorithms leverage sparse
representations for the interaction histories and apply a sparse retriever f,.; with a
similarity function d(x,,X;) to rank a representation x; in the retrieval corpus with
respect to a query x,. These retrievers typically ignore pairs (x4, X;) of representations
with no overlap in item interactions, meaning that x; will never be in the neighbor set
of x, in that case.

Locality. The prediction function f,,.q only uses the k representations with the largest
similarities returned by f..;. Let I'y(S) denote the k-th largest similarity score between
the validation sample x, and the representations from a set S. If d(x4,x;) < I'y(5),
then adding x; to S has no impact on the utility for x,.

The sparsity of the interaction data and the locality property of KNN models allow
us to work with the much smaller set of neighbors of each validation sample instead of
having to process all data points from the training data in each iteration. Apart from
being able to skip certain utility computations, we can further accelerate the algorithm
based on the following characteristics.

Additivity of utilities. Analogous to classification and regression scenarios, the utility V'
of a model with respect to a validation dataset D,,,; in SR is computed as the sum of the
utilities for the individual validation samples x, € Dyq, leading to V(SL U {x;}) —
V(SL) = > x,EDoar V,(SL U {x;}) — V,(S%), where V,, computes the utility with
respect to the validation sample x,. This additivity of utilities enables a mapreduce-like
parallelisation pattern, where we process each individual validation sample x, € Dy,
in parallel and aggregate the resulting marginal contributions per training data point
subsequently.

Linear aggregations at prediction time. The prediction function fp,.q in KNN-SR
models typically first conducts a linear aggregation of the retrieved representations

66

5.5. KMC-Shapley

Algorithm 7 KMC-Shapley — custom-tailored, scalable variant of TMC-Shapley
specialised to KNN-SR models.

1: function KMC-SHAPLEY(D, V, k, Dya)

2: ¢={p1,...,0n} <0 > Initialize Data Shapley values
3: N+ @ > Initialize neighbor index
4: for x; € Dya do > Populate index with neighbors of validation samples
5: Ng ={(xa1,day)s- - (Xapss day)} ¢ free(%q, D)
6: while not converged do
7: 7 <— random permutation of data points in D
8: parfor x, € Dy > Iterate over validation samples in parallel
9: Sort N, according to the positions in 7
10: h < min-heap of capacity k > Initialize min-heap for k neighbors
11: Initialize pre-aggregate o4
12: Vprev < 0 > Initialize previous utility
13: for (xa,,da;) € Ny
14: if |h| < k
15: insert (x,;,dq,;) into h
16: Include x,,; into pre-aggregate o,
17: else
18: (xh,dn) <+ data point and score of heap root
19: ifdo, > dp
20: Remove x;, from pre-aggregate o,
21: Include x,,, into pre-aggregate o
22: update heap root of h with (xq,, da;)
23: if h changed > Set of k-nearest neighbors changed
24: v Vo(forea(Xq,04)) > Utility with current neighbors
25: J < position of X, in T
26: Gr; < Pr; + (U — Uprev) > Update Shapley value
27: Vprey <— V > Update previous utility
28: t <— number of permutations evaluated
29: ¢ +— %(ﬁ > Normalise by number of iterations
30: return Data Shapley values ¢ = {¢1,...,¢n}

(e.g., a weighted sum of their sparse vector representations) and subsequently selects
the items to recommend via a non-linear operation. Since the MC procedure requires
us to sequentially scan the permutation of training points and investigate the impact
of an additional sample (Lines 10—11 in Algorithm 6), it will repeatedly invoke fpeq
with one new neighbor and k£ — 1 neighbors that have been seen in the previous step.
This makes it possible to reuse the aggregation result of the k£ — 1 neighbors from the
previous step. In order to achieve this, we assume that the KNN-SR model can maintain
an aggregate o, of the current top-% neigbor set and directly compute predictions from
this via fpred(Xq, 04), Which allows us to avoid repeating redundant aggregations.

5.5.3 KMC-Shapley Algorithm

Based on the outlined characteristics, we present KMC-Shapley in Algorithm 7. This
variant of TMC-Shapley is tailored for KNN-SR models and runs several orders of

67

5. Scalable Debugging of Recommendation Data in e-Commerce

magnitude faster (as we experimentally show in Section 5.6.1).

KMC-Shapley starts with retrieving and indexing the top-M neighbors {x,,, .. .,
Xa,, f Of each validation sample x, in Lines 4-5. The parameter M denotes the
maximum number of neighbors to consider per validation sample and is typically set to
a high number such as 500. This parameter is inspired by the common practice to limit
the number of neighbors to consider in KNN recommendations via a similarity threshold
or a time-based cut-off [52, 70, 99]. Moreover, recent statistics research showed that
high-cardinality subsets (with more than 100 elements) produce unreliable estimates
of the marginal contribution in DSV computations [61]. Analogous to TMC-Shapley,
our algorithm runs several MC iterations, and generates a random permutation 7 of the
data points in D in each iteration (Line 7). In contrast to TMC-Shapley, KMC-Shapley
does not iterate through all data points in D, but processes each validation sample x,,
independently in parallel (Line 8).

For each validation sample x,, our algorithm needs to consider its indexed neighbors
only, according to their order in the permutation 7 (Line 9), as only the addition of new
neighbors can produce a non-zero marginal contribution for x,. Our algorithm iterates
through these neighbors (Line 13) and maintains the set of top-k neighbors in a binary
heap (Lines 15 and 22). It simultaneously maintains the corresponding pre-aggregate o,
of the top-k neigbor set under changes (Lines 16, 20 and 21). The computation of the
marginal contribution of adding a new neighbor x,, is only necessary (e.g., potentially
non-zero) if the top-% neighbor set for x, changes. In such cases, the change in utility
is computed and used to update the DSV estimate corresponding to x,, (Lines 23-27).
Finally, the Data Shapley values are normalised by the number of iterations conducted
and returned (Lines 28-30).

Complexity analysis. We analyse the time complexity of Algorithm 7. Let P denote
the number of permutations considered. The proposed algorithm runs P iterations
over |Dy,| validation samples, and has to process at most M neighbors per validation
sample. Sorting these according to their positions in the permutation 7 can be done
in O(M log M). For each neighbor, there is a cost of log k for a potential update of
the heap and a constant cost of a single summation and subtraction for maintaining
the pre-aggregate o,. Since M >> k, this results in an overall time complexity of
O(P |Dyu| M log M).

The proposed characteristics of KNN-SR algorithms can also be used to optimise
the computation of the leave-one-out error, we refer to Section 5.9.2 for details.

Toy example. We visualise the advantages of KMC-Shapley over TMC-Shapley on a
toy example in Figure 5.2. For that, we detail how both algorithms process a permutation
m of a dataset set D with eight elements X1, ..., xs for a KNN-SR model with & = 2
and a single validation sample x,. The operations shown correspond to Lines 4—10 in
Algorithm 6 for TMC-Shapley and to Lines 9-24 in Algorithm 7 for KMC-Shapley.
On the left side, TMC-Shapley enumerates eight subsets of D according to the
permutation 7 and evaluates the utility V' of the resulting predictions for the validation
sample x, each time. KMC-Shapley (on the right side) takes the similarities of the data
points in D to the validation sample x, into account and directly maintains the top-2
neighbor set of x, (highlighted in blue). This allows our algorithm to skip redundant
computations, since only changes in the top-2 neighbor set of x, will lead to changes

68

5.6. Evaluation

Validation sample Data permutation mt with similarity to xq

0 0305 0 02 0 04 O

E V(fpred(o,fret(e))))Y ﬁziagnf?beoirr;taor?d-zutility ;E Skipped

_§ V(forea(@,Tet(@ @))) N S S0ty 8| V(foed©.{©}))

B V(fored(@,fee(© © @))) 3| V(f.i(©,{© ©))

2| V(foed(@.7(© © @ @))) O g

= V(fpfed(o,fret(° 9 0 0 e))) X Skipped
V(forea(@, (@ @ @ @ @ @) s | swiveec
V(fo-i(@,1:(0000000)"" | V(fi(0,{00})
V(foed®,f-(0 @@ 0O 0O 0)) | 5iove

Figure 5.2: Comparison of TMC-Shapley to KMC-Shapley for a toy example with eight
data points, a single validation sample x, and a model with k = 2. TMC-Shapley (left
side) processes eight data subsets for the permutation 7 and evaluates the utility function
V' each time. KMC-Shapley (on the right side) takes the similarities of the data points
to x4 into account and directly maintains the top-2 neighbor set of x, (highlighted in
blue). This allows KMC-Shapley to skip many redundant computations, since only
changes in the top-2 neighbor set of x, lead to changes in utility.

in utility. Concretely, KMC-Shapley skips the utility computations for adding the
data points x5, x4, X; and X which have a similarity of zero to the validation x,.
Moreover, KMC-Shapley can also skip the utility computation for adding xg, since the
similarity of xg to X, is too small to change the top-2 neighbor set. Overall, we see that
KMC-Shapley can significantly reduce the number of required utility evaluations.

5.6 Evaluation

We evaluate the efficiency and scalability of ILLOOMINATE and experimentally validate
that it identifies impactful data points.

5.6.1 Efficiency

The goal of our first experiment is to showcase that our proposed optimizations for
KMC-Shapley (Algorithm 7) drastically reduce the runtime compared to TMC-Shapley
(Algorithm 6).

Experimental setup. We run this experiment on a Windows 10 machine with an Intel
19-10900KF CPU. We use a sample of a public session dataset with 250,000 clicks as
training data and 14,058 clicks as validation data, compute DSVs for session-based
recommendation, and repeat each run five times for k& € {50,100, 250,500}. We
measure the mean runtime for a single MC iteration over all training data points with
different algorithm variants. The variant tmc denotes a Rust implementation of the
vanilla TMC-Shapley algorithm (Algorithm 6), which retrains the recommendation
model each time. Next, we introduce our proposed optimizations step by step to

69

5. Scalable Debugging of Recommendation Data in e-Commerce

0.02 BOL-LITERATURE BOL-BABYCARE BOL-WOODENTOYS NOWPLAYING INSTACART
< 0.00
S& —0.02
s
E=
o~ —0.044 — KMC — KMC — KMC — KMC — KMC
— Loo — Loo — Loo — Loo — Loo
_0.06] — randem — random — random — random — random
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Fraction of data removed (%) Fraction of data removed (%) Fraction of data removed (%) Fraction of data removed (%) Fraction of data removed (%)
0.01
£
¢§
S 0.00
g2 H\/\Nﬂ“
’52 — KMC — KMC — KMC — KMC — KMC
_o.01{ — oo — Loo — Loo — Loo — Loo
— random — random — random — random — random

0 5 10 15 20 250 5 10 15 20 250 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Fraction of data removed (%) Fraction of data removed (%) Fraction of data removed (%) Fraction of data removed (%) Fraction of data removed (%)

(a) Removing browsing sessions in SBR.

BOL-PURCHASES TAFENG
0.005
£q 0.000
@
So
53 ~0.005
¥al
£z
a 0.0104 — KMC
— LOO — LOO
= random = random
0.015
0 5 10 15 20 250 5 10 15 20 25
Fraction of data removed (%) Fraction of data removed (%)
0.005
£
g 000
50O
2o
iya)
& .
E2 00051 _ ¢
- LOO
— random
~0.010

0O 5 10 15 20 250 5 10 15 20 25
Fraction of data removed (%) Fraction of data removed (%)

(b) Removing purchase histories in NBR.

Figure 5.3: Impact of removing the most important data points (top row) and data
points with negative importance scores (bottom row) from recommendation systems
for different datasets. Data identified by KMC-Shapley has a stronger impact than data
identified by the leave-one-out error (LOO) or randomly removed data.

transform TMC-Shapley into KMC-Shapley: +indexed denotes a variant that does not
retrain the KNN-SR model, but reuses the indexed neighbors per validation sample
instead; the +top-k variant additionally maintains the top-k neighbor set in a binary
heap and only computes marginal contributions once this set changes; the +pre-agg
variant additionally maintains a pre-aggregate for accelerating inference and the final
optimization +parallelism parallelizes the computation with eight threads.

Results and discussion. We plot the resulting mean runtimes (and the speedup over
the tmc variant) on a logarithmic scale in Figure 5.4(a). We observe that all our
performance optimizations are beneficial, as each optimization further reduces the
runtime. In this experiment, KMC-Shapley is three orders of magnitude faster than the
vanilla TMC-Shapley implementation which repeatedly retrains the model. As expected,

70

5.6. Evaluation

tmc +top-k +parallel
BN +indexed B pre-agg 6

runtime [s]
- S

5 8 8

speedup
H=

)

2 4 6 8
number of cores

(a) Microbenchmark for the benefits of our pro- (b) Scalability evaluation of KMC-Shapley: its run-
posed optimizations. Each optimization reduces time scales linearly with the number of cores avail-
the runtime of the Data Shapley value estimation. able, with diminishing returns for smaller values k.

Figure 5.4: Efficiency and scalability of KMC-Shapley.

the largest runtime reduction originates from reusing the neighbor sets and avoiding
model retraining in the +indexed variant. In this experiment, we find that our algorithm
can conduct a single iteration for all training data points in a second or less for all values
of k.

The results confirm that it is indeed possible to design customized, highly accel-
erated variants of the Shapley value computation for specific classes of algorithms.
Furthermore, the short runtimes shows that our algorithm can be run by data scientists
on their consumer laptops, without expensive accelerator hardware.

5.6.2 Scalability

The goal of the next experiment is to show that our implementation benefits from
additional computational resources, such as CPU cores, and is able to handle datasets
with millions of clicks on a consumer-level laptop.

Experimental setup. We experiment with a session-based recommender on a large
sample of 10,431,353 clicks in 1,668,295 sessions on Bol. We run KMC-Shapley
on a validation set containing 250,000 clicks in 40,023 sessions, vary the number of
neighbors k, and increase the number of cores from one to eight. We run this experiment
on a machine with a Mac M1 Pro, repeat each run six times, and report the speedup
over the single-threaded baseline.

Results and discussion. We plot the resulting speedups in Figure 5.4(b). We observe
that the runtime scales linearly with the number of available cores, which is expected due
to the map-reduce-like computational pattern in KMC-Shapley. We observe diminishing
returns for smaller values of k, which we attribute to the fact that the computation is
less dominated by the computational efforts for inference in these cases. Even on this
large dataset of 10 million data points, a single KMC iteration with eight cores only
takes 136 seconds on average for all training data points..

71

5. Scalable Debugging of Recommendation Data in e-Commerce

Table 5.1: Datasets for session-based recommendation.

#clicks

Dataset #sessions #items train valid test

BOL-LITERATURE proprietary 393,655 50,202 1,704,661 168,109 166,289
BOL-BABYCARE proprietary 29,324 3,161 127,088 13,351 13,395
BOL-WOODENTOYS proprietary 98,420 8,937 437,329 44,427 44,825

NOWPLAYING public 97,922 196,531 489,367 58,277 57,616
INSTACART public 21,068 18,661 124,376 60,104 59,363

5.6.3 Impact of Data Removal

Next, we evaluate how well ILLOOMINATE identifies impactful data points for our
recommendation data. For that, we adopt a common data removal experiment [32, 50,
61] to our recommendation setup. In this experiment, data points are removed from the
training data according to a given order (e.g., sorted ascendingly or descendingly with
respect to their Data Shapley values), and the prediction quality of a model trained on
the remaining data is repeatedly evaluated on a held-out test set. The rate at which the
prediction quality changes indicates how impactful the chosen removal order is.

Session-Based Recommendation

We first conduct a data removal experiment for session-based recommendation [26, 70].

Experimental setup. We leverage the VMIS-KNN recommendation algorithm [52]
with hyperparameters k = 50 and M = 500. We experiment with samples from
two public datasets (NOWPLAYING, INSTACART) and three proprietary click datasets
(BOL-LITERATURE, BOL-BABYCARE, BOL-WOODENTOYS) with up to 1.7 million
clicks from different product categories on Bol. We prepare the datasets as follows: we
conduct a temporal split of the sessions into training sessions and held-out sessions,
and we randomly split the held-out sessions into 50% validation and 50% test data. We
make sure that we only retain items seen in the training data (e.g., we ignore cold-start
items for which no clicks have been seen yet). Table 5.1 summarises the statistics of the
resulting datasets. We compute Data Shapley values via KMC-Shapley and LOO errors
with respect to the MRR for the first 20 recommended items (referred to as MRR @20).

We evaluate the impact of removing highly important sessions with positive DSV
in descending order. We repeat this analogously for sessions with positive leave-one-out
errors and also include a baseline, which simply removes data points at random. We
replicate this experiment for removing low-scored data, where we remove the sessions
with negative DSVs and LOOs in ascending order instead.

Results and discussion. In Figure 5.3(a) we plot the resulting absolute differences in
MRR @20 for the removal of up to 25% of the training sessions. After repeating each
data removal experiment three times, we plot the mean values as solid lines and the
standard deviation as shaded areas. When removing highly important data, we observe
significant differences between notions of data valuation. Removing the training sessions

72

5.7. Applications

Table 5.2: Datasets for next-basket recommendation.

Dataset #users #purchases #baskets #items
BOL-PURCHASES proprietary 97,867 2,309,445 417,028 376,672
TAFENG public 1,000 41,421 6,586 6,586

according to their Data Shapley values drastically reduces the MRR @20 scores by up
to 0.06, which indicates that KMC-Shapley performs significantly better at identifying
high-impact data points. Removing training sessions according to the LOO error still
reduces the scores faster than random removal, but the corresponding sessions have a
lower impact on MRR @20 scores, compared to removal by Data Shapley values.

For removing data with negative importance scores, we again observe the strongest
positive impact with Data Shapley values. This removal even slightly improves the
prediction quality in all datasets, a confirmation that negatively scored data points often
correspond to corrupted data, which hurts model performance. We do not observe such
consistent improvements for removal according to the LOO.

Next-Basket Recommendation

We repeat the data removal experiment for next-basket recommendation.

Experimental setup. The setup is analogous to the previous experiment with the fol-
lowing differences. We use the TIFU-kKNN model [43], which is deployed in production
on online grocery shopping platforms of brands from our partner companies [114]. We
leverage NDCG@21 as an evaluation metric [8], which is common for this recommen-
dation task. We experiment on a large proprietary dataset called BOL-PURCHASES
containing a sample of more than two million purchase events from Bol. Additionally,
we experiment with a sample of 1,000 users from the public dataset TAFENG. Table
5.2 presents the dataset characteristics. We use the purchase history of each user as
training data, from which we hold out their most recent shopping basket. We randomly
split these most recent baskets into validation and test data. Note that we remove user
histories from the training data (analogous to the previous experiment) so that they
will not occur in the neighbor sets, but still leverage a user’s personal history for their
personalized prediction [64].

Results and discussion. In Figure 5.3(b) we plot the resulting differences in NDCG@21
for removing up to 25% of the training sessions. The results observed are in line with
the results from the previous experiment on session-based recommendation.

5.7 Applications

We present several ongoing applications of ILLOOMINATE at Bol. Note that all applica-
tions use the DSV for computing data importance, since it clearly outperforms the LOO
error in identifying impactful data.

73

5. Scalable Debugging of Recommendation Data in e-Commerce

Session containing
dangerous products Q

foldable laundry basket, ’.‘ dangerous for children
advertised as baby bath [l according to reviews

dangerous for children
according to reviews

Session containing
products with
low-quality metadata

pixelated mmm bad
image MM reviews

Session containing
83 clicks on incon-
sistent products

minimum age
of 4 years

minimum age
of 3 years

minimum age
of 8 years

minimum age
of 2 years

Figure 5.5: Examples of sessions with negative importance scores in Bol’s click data
(each box represents a single session consisting of a sequence of clicks on items,
arrows show the order of clicks). We encounter sessions containing dangerous products
(e.g., a foldable laundry basket incorrectly advertised as baby bath), sessions with
metadata quality issues (e.g., pixelated and unidentifiable images) as well as sessions
with inconsistent products (wooden toys for different age ranges).

Purchase history
with unreasonable
number of PS5 con-
trollers and activity
gap

2 days
2 days
231 days

unreasonably high
number of items

unreasonably high
number of items.

several months

Purchase history
with unreasonable
number of karaoke
speakers and
category switch

2 days
2 days

26 days

unreasonably high
number of items

completely unrelated
category (brushes)

Figure 5.6: Examples of purchase histories with negative importance scores from Bol
(boxes indicate items bought together in a shopping cart, arrows point to the next
shopping cart). The histories contain electronics items bought in unreasonably high
numbers (e.g., over a hundred PlayStation controllers), an activity gap, and switches to
completely unrelated product categories (coffee, dental products) at some point.

5.7.1 Identifying Outliers and Corrupted Data

The main purpose of ILLOOMINATE is to help us find corrupted and harmful interaction
data in our production recommendation system Serenade [53]. This session-based
recommendation serves the “others also viewed” recommendations on our product
pages. Apart from improving our recommendation systems, uncovering data issues is
also important for other teams, e.g., those responsible for product quality and risk issues
on the platform.

In order to showcase this use case, we apply our library to a large sample of historical
click data from the babycare, wooden toys, and wooden pencils categories, and compute
DSVs with MRR @20 as the target metric. We find that the lowest-scored sessions
contain inconsistencies, problematic products, and corrupted data. We show three
example sessions taken from the ten lowest-scored sessions found in these data samples
in Figure 5.5. Note that each box in this figure represents a single session consisting
of a sequence of clicks on items, and that arrows indicate the order of clicks. All of
these sessions are harmful to the recommendation system (i.e., including them in the
training data negatively impacts prediction quality) and suffer from data issues. The

74

5.7. Applications

top-most session originates from a user exploring baby bath products and for example
contains a foldable laundry basket, which has been incorrectly advertised as a baby
bath by its seller, and which according to its reviews is actually dangerous to use for
bathing children. The remaining two sessions shown in the figure suffer from different
issues. The second session contains pencil products, many of which suffer from quality
issues in their metadata, such as pixelated and unidentifiable images. The third session
contains the massive number of 83 clicks on wooden toys, and the toys target highly
variable age ranges (one-year-olds to eight-year-olds), making this session unsuitable as
a basis for recommendation.

These examples showcase that DSVs identify low-quality interaction data with
issues that are hard to anticipate upfront. Such analyses typically result in a set of
follow-up actions. First, low-quality interaction data should be filtered from the training
data of our recommendation systems. We are currently in the process of preparing A/B
tests for recommendations trained on such filtered data. Moreover, other teams (e.g., the
risk team) are made aware of the uncovered product issues and will take corresponding
actions, e.g., by removing dangerous products such as the foldable laundry basket from
the platform.

We repeat this analysis with ILLOOMINATE for a large sample of purchase histories
from Bol and a next-basket recommendation model, leveraging NDCG @20 as the target
metric. We again find that the lowest-scored purchase histories contain data that is not
helpful for our recommendation systems. To showcase this, we visualise two of the ten
lowest-scored purchase histories in Figure 5.6. The histories contain electronics items
bought in unreasonable numbers (e.g., over a hundred PlayStation controllers), switch
to completely unrelated product categories (coffee, dental products) at some point, and
are therefore clearly uninformative for a recommendation system. We attribute such
purchase histories to commercial accounts, which buy large numbers of products for
several thousands of Euros as a response to price promotions, probably intended for re-
selling. Note that simply removing all interactions from commercial accounts decreases
prediction quality according to our experience. Therefore, ILLOOMINATE provides
us with a means to identify data with negative impact originating from commercial
accounts on a fine-granular level.

5.7.2 Increasing the Sustainability of Recommendations via Data
Pruning

A major goal of Bol is to make sustainable shopping® easier for customers. We present
an experimental application of DSVs, which contributes to this mission. The aim here
is to increase the number of sustainable items in the predictions of our session-based
recommendation Serenade, without compromising the prediction quality. A model-
centric approach would involve modifying the recommendation engine and forcing it to
apply a higher weight to sustainable products. However, this approach might lead to
lower-quality recommendations that are more speculative as opposed to being grounded
in historical retrieval data. Contrary to this, we choose a data-centric approach which
prunes the underlying data in an effort to remove the histories containing unsustainable

3https://over.bol.com/en/sustainability/

75

https://over.bol.com/en/sustainability/

5. Scalable Debugging of Recommendation Data in e-Commerce

B

] o
-]
: i - =
~ —)
L] Y | NI 4
o -le. .
E = - =

Figure 5.7: Example for the increase in sustainable products with eco-label in the
recommendations for a baby care product after optimising the training set based on a
utility function incorporating item sustainability.

products. This allows us maintain the prediction quality of our recommendation system
by letting the real histories with a higher number of sustainable products serve as a basis
for future recommendations.

In order to modify the behavior of our recommendation system through interventions
on the training data, we need to choose a utility function that is able to measure the
desired behavior. To this end, we augment the product metadata with a binary flag
that indicates whether an item was produced in a sustainable manner. Furthermore,
we modify the MRR metric to include a sustainability term that expresses the number
of sustainable products in a given recommendation. Specifically, we define a utility
function, which we call SustainableMRR@t as 0.8 - M RRQt + 0.2 - 3. This utility
combines the MRR @t with the “sustainability coverage term” 3, where s denotes the
number of sustainable items among the ¢ recommended items.

For this internal experiment, we use ILLOOMINATE to compute Data Shapley values
and leave-one-out errors for our recommendation system with SustainableMRR @21
as a utility on click datasets from the baby care and wooden toys categories on Bol,
which contain large numbers of sustainable products. Next, we prune the training data
based on the computed DSVs (by removing the 5% lowest scored data points) and
evaluate the recommendations on held-out test data. We observe that removing this data
significantly increases the SustainableMRR @21 metric across all cases and that both
the MRR @21 as well as the sustainability coverage increase as a result of the pruning.
Pruning based on LOO leads to unreliable results in our experiment since we observe a
small increase for the wooden toys category, but a decrease in SustainableMRR @21 for
recommendations of baby care items.

In Figure 5.7, we visualise how this pruning impacts an actual recommendation:
we show the top-recommended items for a session with a single click on a baby oil*
item before and after pruning. We see that the recommendations contain two more
sustainable items (care products with the “nordic ecolabel”) once the training data

4https ://www.bol.com/nl/nl/p/baby-pakket/9300000004594165/
Shttps://www.nordic-swan-ecolabel.org

76

https://www.bol.com/nl/nl/p/baby-pakket/9300000004594165/
https://www.nordic-swan-ecolabel.org

5.7. Applications

[”“, +» B 2L D 0B

{1»%»&» &1 ..+

Figure 5.8: Examples of high-value sessions in Bol’s click data (each box represents
a single session consisting of a sequence of clicks on items, arrows show the order
of clicks). These sessions contain highly consistent product selections from related
categories.

megabox voordeelpak
* megabox

luiers 46
512-25kG stuks

40 days

131 days

Figure 5.9: Examples of high-value purchase histories from Bol (boxes indicate items
bought together in a shopping cart, arrows point to the next shopping cart). We
encounter high turn-over items (baby formula, toilet paper) purchased in bulk in regular
intervals.

has been optimised for sustainability. In summary, these results confirm that we can
leverage DSVs with custom-designed utility functions for the data-centric optimisation
of existing recommendation models. We are currently in the process of preparing an
A/B test for the resulting recommendation.

5.7.3 High-Value Data and High-Level Insights

Apart from identifying harmful and corrupted data, we showcase that DSVs computed
by ILLOOMINATE also help us understand which data is most valuable for our recom-
mendation systems. For that, we illustrate two examples from the top ten highest scored
sessions from the previous analysis (Section 5.7.1) in Figure 5.8. These sessions contain
clicks on highly rated items from the wooden toys and wooden pencils categories. The
sessions are highly consistent and focus on products with well-maintained metadata
and high ratings. We also show two purchase histories from the top ten highest scored
purchase histories for the next-basket recommendation model from the previous analysis
in Figure 5.9. These purchase histories contain high turn-over items (baby formula,
diapers and paper towels) purchased in bulk in regular intervals.

Apart from inspecting individual browsing sessions or purchase histories, DSVs also
contribute to the high-level understanding of the interaction data in our recommendation
systems. To give an example, we group the sessions from the datasets in Section 5.6.3
by their age in days and their length (the number of items), and plot these against the
normalised mean Data Shapley values of the sessions in Figure 5.10. We can observe

77

5. Scalable Debugging of Recommendation Data in e-Commerce

]] °
e ® BOL-LITERATURE = o
S 04de BOL-BABYCARE 2 o
S [y ® BOL-WOODENTOYS g 34 ‘

['. []
E 0 = o.' o
© .21 (4]
S w 0]e o 00®
5 S)

[]

3 00 M ‘l:s‘u. E X
= = _3{ © BOL-LITERATURE @ 8
e £ BOL-BABYCARE ©
S —0.21 S ; 3
§ Zo ® BOL-WOODENTOYS

0 20 40 60 1 10 25 100

Session age in days Session length (log-scale)

Figure 5.10: Relationship of the data importance of sessions to their age (in days) and
length (in number of items) for various product categories.

that sessions from the days before the prediction time clearly are most important for the
recommendation systems. Sessions that are between three weeks and eight weeks old
have lower but constant importance, and the impact starts to decline afterwards. This
is in line with general observations about the focus on timely data made in academic
papers [70]. Moreover, we observe that the importance of sessions grows with their
length, but only up to a certain point (which differs per category). This insight helps
with designing features for other use cases on interaction data, e.g., detecting bots
visiting the website.

5.7.4 Transferability to Neural SR Methods

Finally, we present an experimental use case, where we investigate whether the DSVs
computed via our KNN-SR models also “transfer” to other models, as an indication that
they identify “generally” important data. This is inspired by recent work on using DSV
from cheap KNN classifiers [46, 50] as proxies for more expensive models. We re-use
the DSVs computed for the wooden toys category in Section 5.6.3 and repeat the data
removal experiment presented there. However, instead of using the original VMIS-kNN
model, we retrain four neural recommendation models from the recbole library [128]
instead. For GRU4Rec [40] and the self-attention-based approach GC-SAN [123], we
observe that the DSVs identify impactful data more reliably than the LOO error and
that the results differ from random removal (see Figure 5.11). The results for the other
two tested models are inconclusive. We think that these preliminary findings pose an
interesting research direction to pick up by the academic community.

5.8 Conclusion

We have presented a library for the scalable debugging of interaction data for our
recommendation systems at Bol, which identifies impactful sessions and purchase
histories in datasets with millions of interactions and low-quality products, or improving
the ecological sustainability of recommendations via data pruning.

78

5.9. Appendix

GRU4REC GCSAN

0.01 — KMC-Shapley — LOO — random — KMC-Shapley — LOO — random

Difference in
MRR@21

=
—
Yo
c @
o
g 1
L N O,
= — KMC-Shapley — LOO — random — KMC-Shapley — LOO — random
‘ r T T T - T T T
0 5 10 15 20 25 0 5 10 15 20 25
Fraction of train data removed (%) Fraction of train data removed (%)

Figure 5.11: Repetition of the removal experiment for neural SBR models with impor-
tance scores computed by KMC-Shapley on a KNN-SR model. The results indicate the
potential of our importance scores to generalise to other models.

In the future, we plan to include additional models [6, 24, 29] and data importance
algorithms [61, 118] in our library. We also aim to investigate other directions for
increasing the sustainability of our recommendations, e.g., by steering them towards
products with lower weight or lower volume (to reduce logistics costs). Furthermore,
we hope to inspire follow-up work on leveraging the scores from our library as proxies
for expensive neural models.

This concludes the final research chapter of this thesis. In the next chapter, we
discuss our main findings and future research directions.

5.9 Appendix

We provide additional details on our recommendation models in production and on the
efficient LOO computation in ILLOOMINATE.

5.9.1 Recommendation Algorithms

We list the KNN-SR models in production at Bol and our partner companies, and detail
how they fit our computational model outlined in Section 5.4.

Session-based recommendation. For SBR, we recently proposed the VMIS-kKNN
algorithm [52, 70], which is the basis for Bol’s product page recommendations. In this
algorithm, the interaction sequences are represented as sparse binary vectors in item
space, and the retrieval function f,..; conducts a nearest neighbor search based on a
custom, non-symmetric similarity function that computes the item overlap between a
query session and the sessions in the training data, and weighs matches based on the

79

5. Scalable Debugging of Recommendation Data in e-Commerce

positions of overlapping items. The item scoring function f,,..q aggregates the top
neighbors, weighted by several custom factors such as the the position of the first item
match between a neighbor and the query session and the “inverse document frequencies’
of items in the session.

s

Next-basket recommendation. For NBR, ILLOOMINATE contains the TIFU-KNN [43]
algorithm, a variant of which is also in production usage at online grocery shopping
platforms in Europe [114]. TIFU conducts a two-level hierarchical aggregation of groups
of shopping baskets into a sparse vector x,, in item space, which represents the purchase
history of a user. The baskets [s§, . .., s¥] of a user w are first partitioned into groups of
m elements, each of which is aggregated into a group vector v’ = % > rgnfi Shyio
where b denotes the start index of the group, and 7}, is a temporal decay rate to down-

weight the influence of older baskets. The final representation x,, = é ?:0 o VL
of a user u is computed via a subsequent aggregation of the g group vectors with another
temporal decay rate 7,. The retrieval and item scoring functions are conceptually
simple, in our implementation f,.; conducts a nearest neighbor search based on the
Jaccard similarity and fp.q computes a linear combination w x,, + (1 — w) Zle Xa;
of the user’s own purchase vector representation x,, with the neighbor representations

Xaq, - - -, Xay,» Where w denotes the weight put on the personal purchases.

Within-basket recommendation. This task is handled by the PerNIR model [6], which
is also in production usage at online grocery shopping platforms in Europe [114]. It
computes a sparse representation (u,,, C,,) for the interaction history of each user u,
where the first component u,, € Rl represents the personal consumption pattern of
the user and the second component C,, € RI/I*Il represents the item co-occurrence
pattern in their shopping baskets. These components are computed via a temporally
weighted aggregration of the user’s past shopping baskets:

|hu‘_1 1
e = Z |hu‘_t5t

t=0

h,|-1
C, = Izlz 1 Liisesi) Lisesiy
“ || =t (i, s0) = 1(ig,1)]

ij

The indexes ¢ and j refer to items here and the function I(i;, s;) returns the position of
item ¢; in basket s;.

The retrieval function f..; searches for the top-k similar users based on the cosine
similarity u, u, / (|ug||u,|) between the personal consumption patterns u, and u,,
of the query user g and each other user u. During item scoring, the f,..q function of
PerNIR computes a linear combination of the query user’s personal vector u, with the
personal vectors of its neighbors as well as a linear combination of the query user’s item
co-occurrence matrix C, with the item co-occurrence matrices of its neighbors. The
resulting co-occurrence matrix is multiplied with a “selection and summation” vector
built from the query user’s evolving shopping basket s 1 to account for the set of items
already present. Note that IV, refers to the set of neighbors for g retrieved by f,.: and

80

5.9. Appendix

Algorithm 8 K-LOO - Scalable leave-one-out error computation for the interaction
data D with respect to a KNN-SR model.

function K-LOO(D, Dy, V, k)

1:

2 ¢ ={o1,...,Ppn} < 0 > Initialise LOO values
3 parfor x; € Dy > Iterate over validation samples
4 Ny = {Xay,- Xy } & fret(Xg, D,k + 1) > Retrieve neighbors
5: Initialize pre-aggregate o4 from {Xq,,...,Xaq, }

6 vq V(Xq, fpred(0oq)) > Original utility for validation sample
7 forick...1

8: Include x,, ., into pre-aggregate oq

9: Remove x,, from pre-aggregate o4
10: Oqi + vqg — V(Xq, forea(Xq,04q)) > Change in utility
11: Doy — Pa; + Ogi > Update LOO for current neighbor
12: return Leave-one-out errors ¢ = {¢1,...,Pn}

that w and v are hyperparameters to weight the individual components of PerNIR:

+ 1—vw llq Uy, +
w |vu u
/ | N weN, lug|[u, “
(1-w) |vCy+ l-v u;—uu { l{iieszﬂ}
u .
TN uen, lug||uy| Ish1l = I(ii,s511)

5.9.2 Efficient LOO Computation

We sketch the efficient LOO computation for KNN-SR algorithms in Algorithm 8.
The algorithm returns the leave-one-out errors ¢ for all n elements of the dataset D
in a parallel loop over the validation set D,,;. For each validation sample x,, we
retrieve its k + 1 corresponding neighbors and compute the original utility v,. Next,
we loop over the training samples forming the neighbors, maintain the pre-aggregate
o4, compute the utility difference d,; when removing x,, from the neighbor set, and
update the corresponding LOO error accordingly. The time complexity of Algorithm 8
is O(|Dyai] k) since the algorithm processes k + 1 neighbors for each validation sample
from D,y;.

81

Conclusion

This thesis has focused on improving session-based recommendation systems for e-
commerce platforms by addressing challenges in predictive performance, latency, and
cost-efficient deployment and data quality issues. We have provided insights into the
architecture of the production recommendation system at Bol and have confirmed
that conceptually simple algorithms provide strong performance on our proprietary
e-commerce data in Chapter 2, how we can modify, implement, and productionize
a state-of-the-art recommendation system in Chapter 3, how we can assess neural
network recommendation models in a scalable benchmarking framework in Chapter 4.
In Chapter 5, we have uncovered various data quality issues via a data importance
algorithm for sequential kNN-based recommendations that scales to datasets with
millions of interactions.

In this chapter we revisit the research objectives outlined in Chapter 1 and provide
an overview of our key findings related to these questions in Section 6.1. We then
conclude by discussing potential avenues for future research in Section 6.2.

6.1 Summary of Findings

RQ1 Which techniques can improve both the predictive performance and user accep-
tance of recommendations in large-scale SBR systems?

In Chapter 2 we investigated state-of-the-art methods for session-based recommendation
and found that the conceptually simple nearest-neighbor-based VS-kNN approach out-
performs modern neural network-based methods on e-commerce data. We additionally
found that VS-kNN is multiple orders of magnitude faster to train than neural-based
methods. We evaluated the impact of reducing response latency on the acceptance of
recommendations in a large scale A/B test with more than 19 million sessions. By im-
proving serving latency, we were able to significantly improve the customer experience,
leading to notable increases in business-relevant metrics.

83

6. Conclusion

RQ2 How can we scale VS-kNN to efficiently handle billions of interactions while
maintaining low response times and adhering to production requirements in a
real-world SBR system?

In Chapter 3, we proposed Vector-Multiplication-Indexed-Session kNN (VMIS-kNN),
an adaption of a state-of-the-art nearest neighbor approach VS-kNN that leverages a
prebuilt index to compute next-item recommendations within 1.7 milliseconds on all
datasets in an offline load test. This design allows VMIS-kNN to handle hundreds
of millions of historical clicks and provide recommendations at request time, even
under production constraints. Building on this approach, we designed and implemented
SERENADE, a scalable session-based recommendation system that is operational at Bol.
We evaluated the predictive performance of VMIS-kNN, and showed that SERENADE
can answer a thousand recommendation requests per second with a 90th percentile
latency of less than seven milliseconds, requiring only two vCPU’s, even when rec-
ommending from a catalog of millions of items. Furthermore, we presented results
from a three-week-long online A/B test with up to 600 requests per second for 6.5
million distinct items on more than 45 million user sessions from our e-commerce
platform. To the best of our knowledge, we provided the first empirical evidence that
the superior predictive performance of nearest-neighbor approaches to session-based
recommendation in offline evaluations translates to superior performance in a real-world
e-commerce setting.

RQ3 How can we automatically evaluate the inference performance of SBR models
under different deployment options?

In Chapter 4, we introduce ETUDE that automates the benchmarking of neural network-
based SBR models in Kubernetes using synthetic click workloads and provides detailed
latency and throughput metrics to guide cost-efficient deployment decisions. Our
experiments reveal that GPU acceleration significantly reduces latency for large catalogs
(over one million items), while smaller catalogs can be efficiently handled with CPUs.
ETUDE also identified inefficiencies in the implementation of three open-source models
from the Recbole library, leading to notable improvements in industry practices. End-
to-end evaluations demonstrate ETUDE’s ability to recommend deployment setups that
balance performance and cost.

RQ4 How can we efficiently compute Data Shapley values for sequential KNN-based
recommendation systems on real-world datasets with millions of datapoints?

We introduce the KMC-Shapley algorithm in Chapter 5, which leverages the sparsity
of real-world user-item interaction datasets and the locality inherent in kNN-based
recommendation models deployed in production. By focusing on impactful neigh-
bors, the algorithm reduces redundant computations and efficiently evaluates utility
changes. Our experimental evaluation demonstrates that KMC-Shapley significantly
enhances both efficiency and scalability on both public and proprietary datasets, applied
to session-based and next-basket recommendation tasks. These optimizations result
in several orders of magnitude speedup over existing methods, making it feasible to

84

6.2. Future Work

process millions of interactions. Building on this approach, we developed the ILLOOMI-
NATE library, which enables scalable Data Shapley value computation for KNN-based
recommendation systems.

RQS5 Are Data Shapley values helpful for debugging real-world interaction data in
sequential kNN-based recommendation systems?

In Chapter 5, we investigate how ILLOOMINATE utilizes Data Shapley values to system-
atically debug public and proprietary real-world interaction data in recommendation
systems. By applying these values, we identify problematic data points, including
sessions containing dangerous products or items with poor-quality metadata, such as
pixelated images or misleading labels. Pruning these negatively scored data points
results in measurable improvements in metrics such MRR and NDCG, demonstrating
the efficacy of Data Shapley values in optimizing training data. Additionally, we intro-
duce a metric, Sustainable-MRR which aligns with Bol’s sustainability objectives by
prioritizing data associated with sustainable products. By identifying and pruning data
that is inconsistent with these sustainability goals, we achieve not only increased MRR
but also a measurable increase in the ecological sustainability of recommendations.

6.2 Future Work

In this section, we discuss the limitations of the work in this thesis and possible
directions for extending it. In Chapters 2 and 3 we have explored directions to enhance
the product page recommendations at Bol, where we focus on both algorithmic and
systems-related aspects. However, one important factor which we did not address
is how the presentation of recommendations — particularly the title accompanying
them — can influence their effectiveness. From user interviews, we discovered that
some customers find the title “Others Also Viewed” misleading, as it suggests that
the recommendations are based on the actions of other users, while in reality, they are
generated from the customer’s own interactions on the website during their session. This
misalignment could raise questions such as: How does the choice of title, compared to
the recommendation method, influence user engagement and the adoption of behavior-
adaptive recommendations?

In Chapter 4 we have studied evaluating inference latency for neural models for
session-based recommendations. Our experiments have revealed that the scenarios
with a catalog size beyond 100,000 items need multiple CPU’s or accelerated hardware.
An interesting research question to answer is how the incorporation of techniques to
trade-off prediction quality with inference latency, such as model quantization [31]
or approximated nearest neighbor search [48], as well as the automatic choice of
appropriate instance types for declarative specified workloads, improve the efficiency
and scalability of session-based recommendation systems?

In Chapter 5, we present promising findings indicating that the importance scores
generated by sequential KNN-based recommendation models can potentially serve as
proxies for neural network based session recommendation models, which are often too
resource-intensive to retrain frequently. This opens up a valuable new direction for
researchers to explore, with a central research question emerging: How can importance

85

6. Conclusion

scores from KNN-SR models serve as effective proxies for neural models? Investigating
this question could lead to more computationally efficient methods for maintaining
high-quality recommendations without the need for frequent neural model retraining.

Additionally, in real-world scenarios, interaction data is continuously growing as
new user interactions and sessions are recorded. This raises another important question:
How can data importance be incrementally maintained when new data is added, without
recalculating the importance for the same data points each time? Follow-up work should
focus on developing methods to address this challenge, ensuring that the data importance
scores are updated efficiently without unnecessary recomputation of already processed
data. This could significantly reduce computational overhead and thus contribute to
the adoption of data importance scores in real-world sequential KNN-based production
systems, making them feasible for large-scale, continuously evolving datasets.

We hope that this thesis serves as a catalyst for future research that reduces the gap
between academia and industry.

86

(1]

(3]

(6]

[7]

[8]

[91

(10]
(11]

[12]

(13]

[14]

(15]

[16]

(17]

[18]

Bibliography

Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, 1. F. Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker,
and N. Tang. Detecting data errors: where are we and what needs to be done? Proc. VLDB
Endow., 9:993-1004, Aug. 2016. ISSN 2150-8097. doi: 10.14778/2994509.2994518. URL https:
//doi.org/10.14778/2994509.2994518. (Cited on page 60.)

Actix. Actix Web - a powerful, pragmatic, and extremely fast web framework for Rust, 2023. URL
https://actix.rs. (Cited on pages 31 and 49.)

Albert Heijn. Van land tot klant: onze ketens, 2023. URL https://www.ah.nl/over-ah/
duurzaamheid/onze-ketens. (Cited on page 52.)

X. Amatriain. Building industrial-scale real-world recommender systems. In Proceedings of the
Sixth ACM Conference on Recommender Systems, RecSys *12, page 7-8, New York, NY, USA, 2012.
Association for Computing Machinery. ISBN 9781450312707. doi: 10.1145/2365952.2365958. (Cited
on pages 12, 25, and 41.)

I. Arapakis, X. Bai, and B. B. Cambazoglu. Impact of response latency on user behavior in web
search. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR 14, page 103-112, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450322577. doi: 10.1145/2600428.2609627. (Cited on pages 19,
21,24, and 44.)

M. Ariannezhad, M. Li, S. Schelter, and M. de Rijke. A personalized neighborhood-based model for
within-basket recommendation in grocery shopping. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pages 87-95, 2023. (Cited on pages 58, 59, 62, 79,
and 80.)

Ars Technica. Lazy use of Al leads to Amazon products called “I cannot fulfill that request”, 2024.
URL https://arstechnica.com/ai/2024/01/lazy-use-of-ai-leads-to-amazon-products-
called-i-cannot-fulfill-that-request/. (Cited on pages 2 and 58.)

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval, volume 463. ACM press New
York, 1999. (Cited on pages 62, 64, and 73.)

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.0473. (Cited on pages 12 and 16.)

J. Bai, F. Lu, K. Zhang, et al. Onnx: Open neural network exchange, 2019. URL https://github.
com/onnx/onnx. (Cited on page 54.)

Bol.com. Facts and figures about bol.com, 2023. URL https://pers.bol.com/en/facts-
figures/. (Cited on page 52.)

Buzzfeed. “Amazon’s choice” does not necessarily mean a product is good, 2019. URL https:
//www.buzzfeednews.com/article/nicolenguyen/amazons-choice-bad-products. (Cited on
page 58.)

B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. StreamRec: a real-time recommender
system. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11, page 1243-1246, New York, NY, USA, 2011. Association for Computing Machinery.
ISBN 9781450306614. doi: 10.1145/1989323.1989465. (Cited on pages 12, 25, and 60.)

Channel 4 News. Potentially deadly bomb ingredients are ‘frequently bought together’ on Ama-
zon, 2017. URL https://www.channel4.com/news/potentially-deadly-bomb-ingredients-
on-amazon. (Cited on pages 2 and 58.)

T. Chen, H. Yin, H. Chen, R. Yan, Q. V. H. Nguyen, and X. Li. Air: Attentional intention-aware
recommender systems. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 304-315, 2019. doi: 10.1109/ICDE.2019.00035. (Cited on pages 25 and 60.)

K.-J. Cho, Y.-C. Lee, K. Han, J. Choi, and S.-W. Kim. No, that’s not my feedback: Tv show
recommendation using watchable interval. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 316-327, 2019. doi: 10.1109/ICDE.2019.00036. (Cited on pages 25
and 60.)

P. Covington, J. Adams, and E. Sargin. Deep neural networks for YouTube recommendations. In
Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, page 191-198,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450340359. doi:
10.1145/2959100.2959190. (Cited on page 1.)

daryheap2021. d-ary heap. https://docs.rs/dary_heap/0.3.0/dary_heap/, 2021. (Cited on

87

https://doi.org/10.14778/2994509.2994518
https://doi.org/10.14778/2994509.2994518
https://actix.rs
https://www.ah.nl/over-ah/duurzaamheid/onze-ketens
https://www.ah.nl/over-ah/duurzaamheid/onze-ketens
https://arstechnica.com/ai/2024/01/lazy-use-of-ai-leads-to-amazon-products-called-i-cannot-fulfill-that-request/
https://arstechnica.com/ai/2024/01/lazy-use-of-ai-leads-to-amazon-products-called-i-cannot-fulfill-that-request/
http://arxiv.org/abs/1409.0473
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://pers.bol.com/en/facts-figures/
https://pers.bol.com/en/facts-figures/
https://www.buzzfeednews.com/article/nicolenguyen/amazons-choice-bad-products
https://www.buzzfeednews.com/article/nicolenguyen/amazons-choice-bad-products
https://www.channel4.com/news/potentially-deadly-bomb-ingredients-on-amazon
https://www.channel4.com/news/potentially-deadly-bomb-ingredients-on-amazon
https://docs.rs/dary_heap/0.3.0/dary_heap/

6. Bibliography

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

page 29.)

A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online
collaborative filtering. In Proceedings of the 16th International Conference on World Wide Web,
WWW °07, page 271-280, New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595936547. doi: 10.1145/1242572.1242610. (Cited on pages 12, 14, and 25.)

J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert,
B. Livingston, and D. Sampath. The YouTube video recommendation system. In Proceedings of the
Fourth ACM Conference on Recommender Systems, RecSys *10, page 293-296, New York, NY, USA,
2010. Association for Computing Machinery. ISBN 9781605589060. doi: 10.1145/1864708.1864770.
(Cited on pages 1, 12, and 14.)

T. Dunning and E. Friedman. Practical Machine Learning: Innovations in Recommendation.
O’Reilly Media, Inc.”, 2014. (Cited on page 25.)

Ekta and R. Pradhan. Valuation-based data acquisition to improve machine learning fairness. Quality
in Databases workshop at VLDB, 2150:8097, 2024. (Cited on page 60.)

M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, and J. McPherson. Cohadoop: flexible
data placement and its exploitation in hadoop. Proc. VLDB Endow., 4(9):575-585, June 2011. ISSN
2150-8097. doi: 10.14778/2002938.2002943. (Cited on page 31.)

G. Faggioli, M. Polato, and F. Aiolli. Recency aware collaborative filtering for next basket rec-
ommendation. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and
Personalization, UMAP 20, page 80-87, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450368612. doi: 10.1145/3340631.3394850. URL https://doi.org/10.
1145/3340631.3394850. (Cited on pages 62 and 79.)

X. Fan, Z. Liu, J. Lian, W. X. Zhao, X. Xie, and J.-R. Wen. Lighter and better: Low-rank decomposed
self-attention networks for next-item recommendation. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 21, page
1733-1737, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380379.
doi: 10.1145/3404835.3462978. (Cited on pages 1, 44, and 46.)

M. Ferrari Dacrema, P. Cremonesi, and D. Jannach. Are we really making much progress? a
worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM
Conference on Recommender Systems, RecSys *19, page 101-109, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450362436. doi: 10.1145/3298689.3347058. URL
https://doi.org/10.1145/3298689.3347058. (Cited on pages 62 and 72.)

L. Flokas, W. Wu, Y. Liu, J. Wang, N. Verma, and E. Wu. Complaint-driven training data debugging
at interactive speeds. In Proceedings of the 2022 International Conference on Management of Data,
SIGMOD ’22, page 369-383, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450392495. doi: 10.1145/3514221.3517849. URL https://doi.org/10.1145/3514221.
3517849. (Cited on page 60.)

C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua, and D. Jin. Neural multi-task recommen-
dation from multi-behavior data. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 1554-1557,2019. doi: 10.1109/ICDE.2019.00140. (Cited on pages 25 and 60.)

D. Garg, P. Gupta, P. Malhotra, L. Vig, and G. Shroff. Sequence and time aware neighborhood
for session-based recommendations: Stan. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR’19, page 1069-1072,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361729. doi: 10.
1145/3331184.3331322. URL https://doi.org/10.1145/3331184.3331322. (Cited on pages 62
and 79.)

B. G. Gebre, K. Ranta, S. van den Elzen, E. Kuiper, T. Baars, and T. Heskes. Pfeed: Generating near
real-time personalized feeds using precomputed embedding similarities. ArXiv, abs/2402.16073, 2024.
URL https://api.semanticscholar.org/CorpusID:267938115. (Cited on page 1.)

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quantization
methods for efficient neural network inference. In Low-Power Computer Vision, pages 291-326.
Chapman and Hall/CRC, 2022. (Cited on pages 54 and 85.)

A. Ghorbani and J. Zou. Data Shapley: Equitable valuation of data for machine learning. In
International Conference on Machine Learning, pages 2242-2251, 2019. (Cited on pages 2, 4, 6, 58,
59, 60, 61, 65, and 72.)

Google. General-purpose machine family for Compute Engine, 2023. URL https://cloud.google.
com/compute/docs/general-purpose-machines#e2_machine_types. (Cited on page 49.)
Google. Compute Engine Pricing, 2023. URL https://cloud.google.com/compute/all-pricing.

»

88

https://doi.org/10.1145/3340631.3394850
https://doi.org/10.1145/3340631.3394850
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3514221.3517849
https://doi.org/10.1145/3514221.3517849
https://doi.org/10.1145/3331184.3331322
https://api.semanticscholar.org/CorpusID:267938115
https://cloud.google.com/compute/docs/general-purpose-machines#e2_machine_types
https://cloud.google.com/compute/docs/general-purpose-machines#e2_machine_types
https://cloud.google.com/compute/all-pricing

[35]

[36]

(37]

(38]

[39]

[40]

[41]

(42]

(43]

[44]

(45]

[46]

[47]

(48]

(49]

[50]

(Cited on page 54.)

googleblogIntroducingTensorFlow. Introducing TensorFlow Feature Columns — devel-
opers.googleblog.com. https://developers.googleblog.com/2017/11/introducing-
tensorflow-feature-columns.html, 2017. [Accessed 28-09-2023]. (Cited on page 50.)

L. Guo, H. Yin, Q. Wang, B. Cui, Z. Huang, and L. Cui. Group recommendation with latent voting
mechanism. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 121-132,
2020. doi: 10.1109/ICDE48307.2020.00018. (Cited on pages 25 and 60.)

Z. Hammoudeh and D. Lowd. Training data influence analysis and estimation: a survey. Mach.
Learn., 113(5):2351-2403, Mar. 2024. ISSN 0885-6125. doi: 10.1007/s10994-023-06495-7. URL
https://doi.org/10.1007/s10994-023-06495-7. (Cited on pages 58, 60, and 61.)

J. He, J. Qi, and K. Ramamohanarao. A joint context-aware embedding for trip recommendations. In
2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 292-303, 2019. doi:
10.1109/ICDE.2019.00034. (Cited on pages 25 and 60.)

A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-shot learning for error
detection. In Proceedings of the 2019 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’19). ACM, 2019. URL https://api.semanticscholar.org/CorpusID:102353360.
(Cited on page 60.)

B. Hidasi and A. Karatzoglou. Recurrent neural networks with top-k gains for session-based recom-
mendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM 18, page 843-852, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450360142. doi: 10.1145/3269206.3271761. (Cited on pages 17, 61, and 78.)
B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommendations with recurrent
neural networks. In Y. Bengio and Y. LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.06939. (Cited on pages 12, 13, 17, 25, and 34.)

Y. Hou, B. Hu, Z. Zhang, and W. X. Zhao. Core: Simple and effective session-based recommendation
within consistent representation space. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR *22, page 1796-1801, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.
3531955. (Cited on pages 1, 44, and 46.)

H. Hu, X. He, J. Gao, and Z.-L. Zhang. Modeling personalized item frequency information for next-
basket recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR *20, page 1071-1080, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450380164. doi: 10.1145/3397271.3401066. (Cited
on pages 25, 34, 58, 59, 62, 64, 66, 73, and 80.)

Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec: Real-time stream recommendation in
practice. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, page 227-238, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450327589. doi: 10.1145/2723372.2742785. (Cited on pages 12, 14, 25, and 60.)

D. Jannach and M. Ludewig. When recurrent neural networks meet the neighborhood for session-
based recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems,
RecSys *17, page 306-310, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450346528. doi: 10.1145/3109859.3109872. (Cited on pages 13, 17, 25, and 62.)

R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang, C. Spanos, and D. Song.
Efficient task-specific data valuation for nearest neighbor algorithms. Proc. VLDB Endow., 12
(11):1610-1623, July 2019. ISSN 2150-8097. doi: 10.14778/3342263.3342637. URL https:
//doi.org/10.14778/3342263.3342637. (Cited on pages 59, 60, 65, and 78.)

R. Jia, F. Wu, X. Sun, J. Xu, D. Dao, B. Kailkhura, C. Zhang, B. Li, and D. Song. Scalability vs.
utility: Do we have to sacrifice one for the other in data importance quantification? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8239-8247, 2021. doi:
10.1109/CVPR46437.2021.00814. (Cited on page 59.)

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. IEEE Transactions on
Big Data, 7(3):535-547, 2021. doi: 10.1109/TBDATA.2019.2921572. (Cited on pages 54 and 85.)
W.-C. Kang and J. McAuley. Self-attentive sequential recommendation. In 20/8 IEEE International
Conference on Data Mining (ICDM), pages 197-206, Los Alamitos, CA, USA, Nov. 2018. IEEE
Computer Society. doi: 10.1109/ICDM.2018.00035. (Cited on pages 44 and 46.)

B. Karlas, D. Dao, M. Interlandi, S. Schelter, W. Wu, and C. Zhang. Data debugging with Shapley
importance over machine learning pipelines. In The Twelfth International Conference on Learning

&9

https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://doi.org/10.1007/s10994-023-06495-7
https://api.semanticscholar.org/CorpusID:102353360
http://arxiv.org/abs/1511.06939
https://doi.org/10.14778/3342263.3342637
https://doi.org/10.14778/3342263.3342637

6. Bibliography

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Representations, 2023. (Cited on pages 58, 59, 60, 61, 72, and 78.)

B. Kersbergen and S. Schelter. Learnings from a retail recommendation system on billions of
interactions at bol.com. In 2021 IEEE 37th International Conference on Data Engineering (ICDE),
pages 2447-2452, 2021. doi: 10.1109/ICDE51399.2021.00277. (Cited on pages 7, 23, 24, 25, 34, 39,
44, and 60.)

B. Kersbergen, O. Sprangers, and S. Schelter. Serenade — Low-latency session-based recommendation
in e-commerce at scale. In Proceedings of the 2022 International Conference on Management of Data,
SIGMOD ’22, page 150-159, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450392495. doi: 10.1145/3514221.3517901. (Cited on pages 8, 44, 54, 58, 59, 61, 62, 63,
64, 66, 68,72, and 79.)

B. Kersbergen, O. Sprangers, F. Kootte, S. Guha, M. de Rijke, and S. Schelter. Etude — Evaluating the
inference latency of session-based recommendation models at scale. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE), pages 5177-5183, Los Alamitos, CA, USA, May 2024.
IEEE Computer Society. doi: 10.1109/ICDE60146.2024.00389. (Cited on pages 8, 60, and 74.)

B. Kersbergen, O. Sprangers, B. Karla§, M. de Rijke, and S. Schelter. Illoominate — Scalable debugging
of recommendation data in e-commerce. Under submission, 2025. (Cited on page 8.)

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70, ICML’ 17, page 1885-1894.
JMLR .org, 2017. (Cited on page 60.)

R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. Online controlled experiments
at large scale. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD *13, page 1168-1176, New York, NY, USA, 2013. Association for
Computing Machinery. ISBN 9781450321747. doi: 10.1145/2487575.2488217. (Cited on pages 19
and 21.)

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30-37, 2009. doi: 10.1109/MC.2009.263. (Cited on pages 12, 24, and 25.)

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84-90, May 2017. ISSN 0001-0782. doi: 10.1145/3065386. (Cited
on pages 12 and 16.)

kubeservices2021. Kubernetes networking services. https://kubernetes.io/docs/concepts/
services-networking/service/, 2021. (Cited on page 32.)

H. W. Kuhn and A. W. Tucker. Contributions to the Theory of Games. Number 28 in Annals of
Mathematics Studies. Princeton University Press, 1953. (Cited on page 61.)

Y. Kwon and J. Y. Zou. Beta Shapley: a unified and noise-reduced data valuation framework for
machine learning. In International Conference on Artificial Intelligence and Statistics, 2021. URL
https://api.semanticscholar.org/CorpusID:239998535. (Cited on pages 4, 58, 59, 60, 61, 65,
68,72, and 79.)

J. J. Levandoski, M. Sarwat, M. F. Mokbel, and M. D. Ekstrand. RecStore: an extensible and
adaptive framework for online recommender queries inside the database engine. In Proceedings
of the 15th International Conference on Extending Database Technology, EDBT *12, page 86-96,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450307901. doi:
10.1145/2247596.2247608. (Cited on pages 12, 25, and 60.)

J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based recommendation. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM
17, page 1419-1428, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450349185. doi: 10.1145/3132847.3132926. (Cited on pages 12, 13, 17, 23, 25, 34, 44, and 46.)
M. Li, S. Jullien, M. Ariannezhad, and M. de Rijke. A next basket recommendation reality check.
ACM Trans. Inf. Syst., 41(4), Apr. 2023. ISSN 1046-8188. doi: 10.1145/3587153. (Cited on pages 25,
34,58, 62, and 73.)

P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang. Cleanml: A study for evaluating the impact
of data cleaning on ml classification tasks. In Proceedings of the 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 1324, 2021. URL https://api.semanticscholar.
org/CorpusID:229666398. (Cited on page 60.)

G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76-80, 2003. doi: 10.1109/MIC.2003.1167344. (Cited on page 58.)
Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang. Stamp: Short-term attention/memory priority model for
session-based recommendation. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 18, page 1831-1839, New York, NY, USA, 2018.

90

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://api.semanticscholar.org/CorpusID:239998535
https://api.semanticscholar.org/CorpusID:229666398
https://api.semanticscholar.org/CorpusID:229666398

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(77]

(78]

(791

(80]

[81]
(82]

(83]

Association for Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3219950. (Cited
on pages 1, 2, 12, 13, 17, 23, 25, 34, 44, and 46.)

Z. Liu, Z. Zhou, and T. Rekatsinas. Picket: guarding against corrupted data in tabular data during
learning and inference. The VLDB Journal, 31(5):927-955, Oct. 2021. ISSN 1066-8888. doi:
10.1007/s00778-021-00699-w. URL https://doi.org/10.1007/s00778-021-00699-w. (Cited on
page 60.)

Z.-P. Liu, L. Zou, X. Zou, C. Wang, B. Zhang, D. Tang, B. Zhu, Y. Zhu, P. Wu, K. Wang, and
Y. Cheng. Monolith: Real time recommendation system with collisionless embedding table. ArXiv,
abs/2209.07663, 2022. URL https://api.semanticscholar.org/CorpusID:252355135. (Cited
on page 1.)

M. Ludewig, N. Mauro, S. Latifi, and D. Jannach. Performance comparison of neural and non-
neural approaches to session-based recommendation. In Proceedings of the 13th ACM Conference
on Recommender Systems, RecSys *19, page 462-466, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450362436. doi: 10.1145/3298689.3347041. (Cited on pages 3, 6,
12,13, 17, 18, 19, 21, 23, 24, 25, 26, 33, 34, 44, 58, 61, 62, 68, 72, 78, and 79.)

M. Ludewig, N. Mauro, S. Latifi, and D. Jannach. Empirical analysis of session-based recommendation
algorithms: A comparison of neural and non-neural approaches. User Modeling and User-Adapted
Interaction, 31(1):149-181, Mar. 2021. ISSN 0924-1868. doi: 10.1007/s11257-020-09277-1. (Cited
on page 44.)

X. Luo and J. Pei. Applications and computation of the Shapley value in databases and machine
learning. In Companion of the 2024 International Conference on Management of Data, SIGMOD-
/PODS ’24, page 630-635, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400704222. doi: 10.1145/3626246.3654680. URL https://doi.org/10.1145/3626246.
3654680. (Cited on pages 59 and 60.)

S. Madisetty. Event recommendation using social media. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 2106-2110, 2019. doi: 10.1109/ICDE.2019.00249. (Cited on
pages 25 and 60.)

S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how accuracy metrics have
hurt recommender systems. In CHI "06 Extended Abstracts on Human Factors in Computing Systems,
CHI EA °06, page 1097-1101, New York, NY, USA, 2006. Association for Computing Machinery.
ISBN 1595932984. doi: 10.1145/1125451.1125659. (Cited on page 1.)

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential dataflow. In Sixth Biennial Conference
on Innovative Data Systems Research, CIDR 2013, Asilomar, CA, USA, January 6-9, 2013, Online Pro-
ceedings. www.cidrdb.org, 2013. URL http://cidrdb.org/cidr2013/Papers/CIDR13_Paperi11.
pdf. (Cited on pages 37 and 41.)

W. Meng, D. Yang, and Y. Xiao. Incorporating user micro-behaviors and item knowledge into multi-
task learning for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR *20, page 1091-1100,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380164. doi:
10.1145/3397271.3401098. (Cited on page 2.)

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde,
S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLIlib: machine
learning in apache spark. J. Mach. Learn. Res., 17(1):1235-1241, Jan. 2016. ISSN 1532-4435. (Cited
on pages 15 and 31.)

New York Times. Lawmakers press Amazon on sales of chemical used in suicides,
2022. URL https://www.nytimes.com/2022/02/04/technology/amazon-suicide-poison-
preservative.html. (Cited on page 58.)

NVIDIA. TensorRT, an SDK for high-performance deep learning inference, 2023. URL https:
//developer.nvidia.com/tensorrt. (Cited on page 54.)

L. Oala, M. Maskey, L. Bat-Leah, A. Parrish, N. M. Giirel, T.-S. Kuo, Y. Liu, R. Dror, D. Brajovic,
X. Yao, et al. Dmlr: Data-centric machine learning research—past, present and future. DMLR, 2024.
(Cited on page 58.)

S. Owen. Mahout in action, volume 10. Manning Shelter Island, NY, 2012. (Cited on page 25.)

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. In NIPS 2017 Workshop on Autodiff, 2017. URL
https://openreview.net/forum?id=BJJsrmfCZ. (Cited on pages 46 and 48.)

A. Pfadler, H. Zhao, J. Wang, L. Wang, P. Huang, and D. L. Lee. Billion-scale recommendation
with heterogeneous side information at Taobao. In 36th IEEE International Conference on Data

91

https://doi.org/10.1007/s00778-021-00699-w
https://api.semanticscholar.org/CorpusID:252355135
https://doi.org/10.1145/3626246.3654680
https://doi.org/10.1145/3626246.3654680
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://www.nytimes.com/2022/02/04/technology/amazon-suicide-poison-preservative.html
https://www.nytimes.com/2022/02/04/technology/amazon-suicide-poison-preservative.html
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://openreview.net/forum?id=BJJsrmfCZ

6. Bibliography

[84]

[85]

[86]
[87]

[88]

[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

(971

[98]

[99]

[100]

Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1667-1676. IEEE, 2020. doi:
10.1109/ICDE48307.2020.00148. (Cited on pages 25 and 60.)

N. Polyzotis, M. Zinkevich, S. Roy, E. Breck, and S. Whang. Data validation for machine learning. In
Proceedings of Machine Learning and Systems, volume 1, pages 334-347, 2019. (Cited on page 60.)
R. Pradhan, J. Zhu, B. Glavic, and B. Salimi. Interpretable data-based explanations for fairness
debugging. In Proceedings of the 2022 International Conference on Management of Data, SIG-
MOD ’22, page 247-261, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450392495. doi: 10.1145/3514221.3517886. URL https://doi.org/10.1145/3514221.
3517886. (Cited on page 60.)

PyTorch. TorchServe benchmark results, 2022. URL https://github.com/pytorch/serve/tree/
master/benchmarks#installation-1/. (Cited on page 50.)

PyTorch. JIT Optimisation, 2023. URL https://pytorch.org/docs/stable/generated/torch.
jit.optimize_for_inference.html. (Cited on page 51.)

M. Raasveldt and H. Miihleisen. DuckDB: an embeddable analytical database. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD ’19, page 1981-1984,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450356435. doi:
10.1145/3299869.3320212. (Cited on page 37.)

recbole1816. How to do online serving - issue #1816. — github.com. https://github.com/
RUCAIBox/RecBole/issues/1816, 2023. [Accessed 16-10-2023]. (Cited on page 44.)

recbole1855. Questions about optimization and efficiency - issue #1855. — github.com. https://
github.com/RUCAIBox/RecBole/issues/ 1855, 2023. [Accessed 16-10-2023]. (Cited on page 44.)
V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson, M. Breughe,
M. Charlebois, W. Chou, R. Chukka, C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick,
J. S. Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao,
A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne, G. Pekhimenko, A. T. R. Rajan,
D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu,
G. Yuan, A. Zhong, P. Zhang, and Y. Zhou. MLPerf inference benchmark. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture, ISCA °20, page 446-459.
IEEE Press, 2020. ISBN 9781728146614. doi: 10.1109/ISCA45697.2020.00045. (Cited on page 44.)
S. Redyuk, Z. Kaoudi, V. Markl, and S. Schelter. Automating data quality validation for dynamic data
ingestion. In EDBT, pages 61-72, 2021. (Cited on page 60.)

P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. de Rijke. RepeatNet: a repeat aware neu-
ral recommendation machine for session-based recommendation. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Arti-
ficial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAT"19/IAAT’19/EAAT’ 19. AAAI Press, 2019. ISBN 978-1-57735-809-1. doi:
10.1609/aaai.v33i01.33014806. (Cited on pages 1, 23, 44, and 46.)

F. Ricci, L. Rokach, and B. Shapira. Introduction to Recommender Systems Handbook, pages 1-35.
Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_1.
(Cited on pages 12, 25, and 60.)

rn512021. Performance comparison of neural and non-neural approaches to session-based recom-
mendation - additional information. https://rn51.github.io/session-rec/, 2021. (Cited on
page 33.)

rocksdb2021. RocksDB. https://rocksdb.org, 2021. (Cited on page 32.)

RUCAIBox. RecBole model issues, 2023. URL https://github.com/RUCAIBox/RecBole/
issues/. Specific issues: #1894 and #1895. (Cited on pages 6 and 53.)

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th International Conference on World Wide Web, WWW ’01, page
285-295, New York, NY, USA, 2001. Association for Computing Machinery. ISBN 1581133480. doi:
10.1145/371920.372071. (Cited on pages 1, 12, 14, 24, 25, and 39.)

S. Schelter, C. Boden, and V. Markl. Scalable similarity-based neighborhood methods with mapreduce.
In Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys *12, page 163-170,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450312707. doi: 10.
1145/2365952.2365984. URL https://doi.org/10.1145/2365952.2365984. (Cited on pages 12,
24,25, and 68.)

S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Grafberger. Automating large-
scale data quality verification. In Proceedings of the VLDB Endowment (PVLDB), volume 11,
page 1781-1794. VLDB Endowment, Aug. 2018. doi: 10.14778/3229863.3229867. URL https:

92

https://doi.org/10.1145/3514221.3517886
https://doi.org/10.1145/3514221.3517886
https://github.com/pytorch/serve/tree/master/benchmarks#installation-1/
https://github.com/pytorch/serve/tree/master/benchmarks#installation-1/
https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html
https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html
https://github.com/RUCAIBox/RecBole/issues/1816
https://github.com/RUCAIBox/RecBole/issues/1816
https://github.com/RUCAIBox/RecBole/issues/1855
https://github.com/RUCAIBox/RecBole/issues/1855
https://rn5l.github.io/session-rec/
https://rocksdb.org
https://github.com/RUCAIBox/RecBole/issues/
https://github.com/RUCAIBox/RecBole/issues/
https://doi.org/10.1145/2365952.2365984
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

[115]

[116]
[117]

[118]

//doi.org/10.14778/3229863.3229867. (Cited on page 60.)

S. Schelter, U. Celebi, and T. Dunning. Efficient incremental cooccurrence analysis for item-based
collaborative filtering. In Proceedings of the 31st International Conference on Scientific and Statistical
Database Management, SSDBM 19, page 61-72, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450362160. doi: 10.1145/3335783.3335784. (Cited on page 25.)
S. Schelter, S. Grafberger, P. Schmidt, T. Rukat, M. Kiessling, A. Taptunov, F. Biessmann, and
D. Lange. Differential data quality verification on partitioned data. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 1940-1945, 2019. doi: 10.1109/ICDE.2019.00210.
(Cited on page 60.)

S. Schelter, S. Grafberger, S. Guha, B. Karlas, and C. Zhang. Proactively screening machine learning
pipelines with arguseyes. In Companion of the 2023 International Conference on Management of
Data, SIGMOD 23, page 91-94, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9781450395076. doi: 10.1145/3555041.3589682. URL https://doi.org/10.1145/3555041.
3589682. (Cited on pages 60 and 61.)

S. Shankar, L. Fawaz, K. Gyllstrom, and A. G. Parameswaran. Moving fast with broken data. CoRR,
abs/2303.06094, 2023. doi: 10.48550/ARXIV.2303.06094. URL https://doi.org/10.48550/
arXiv.2303.06094. (Cited on page 60.)

H. Shojanazeri. TorchServe performance tuning, animated drawings case-study, 2022. URL https:
//pytorch.org/blog/torchserve-performance-tuning/. (Cited on page 50.)

sidecars2021. Istio sidecars. https://istio.io/latest/docs/reference/config/networking/
sidecar/, 2021. (Cited on page 32.)

J.Song, Z.Li, Z. Hu, Y. Wu, Z. Li, J. Li, and J. Gao. PoisonRec: An adaptive data poisoning framework
for attacking black-box recommender systems. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 157-168, 2020. doi: 10.1109/ICDE48307.2020.00021. (Cited on pages 25
and 60.)

Q. Tan, J. Zhang, J. Yao, N. Liu, J. Zhou, H. Yang, and X. Hu. Sparse-interest network for sequential
recommendation. In Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, WSDM 21, page 598-606, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450382977. doi: 10.1145/3437963.3441811. (Cited on pages 44 and 46.)

Y. K. Tan, X. Xu, and Y. Liu. Improved recurrent neural networks for session-based recommendations.
In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, page
17-22, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450347952.
doi: 10.1145/2988450.2988452. (Cited on pages 44 and 46.)

J. Tang and K. Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, WSDM ’18, page 565-573, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450355810. doi: 10.1145/3159652.3159656. URL https://doi.org/10.1145/3159652.
3159656. (Cited on page 2.)

tch-rs. Rust bindings for the C++ api of PyTorch., 2023. URL https://github.com/
LaurentMazare/tch-rs. (Cited on page 49.)

TorchServe. TorchServe - A performant, flexible and easy to use tool for serving PyTorch models in
production., 2023. URL https://pytorch.org/serve/. (Cited on page 48.)

M. Tsagkias, T. H. King, S. Kallumadi, V. Murdock, and M. de Rijke. Challenges and research
opportunities in ecommerce search and recommendations. SIGIR Forum, 54(1), Feb. 2021. ISSN
0163-5840. doi: 10.1145/3451964.3451966. (Cited on pages 25 and 60.)

M. Vechtomova et al. Databricks Al summit: Streamlining API deploy ML models across multiple
brands: Ahold Delhaize’s experience on serverless, 2023. URL https://www.youtube.com/watch?
v=GSJFyoBiCXk. (Cited on pages 59, 62, 63, 73, and 80.)

Vice News. Al-generated books of nonsense are all over amazon’s bestseller lists,
2023. URL https://www.vice.com/en/article/ai-generated-books-of-nonsense-are-
all-over-amazons-bestseller-1lists/. (Cited on page 58.)

vsknnimpl2021. VS-kNN reference implementation. https://github.com/rn51/session-rec/
blob/master/algorithms/knn/vsknn.py, 2021. (Cited on page 37.)

P. Walsh. batched-fn - a Rust server plugin for deploying deep learning models with batched prediction,
2023. URL https://github.com/epwalsh/batched-fn. (Cited on page 49.)

J. T. Wang and R. Jia. Data Banzhaf: A robust data valuation framework for machine learning. In
F. Ruiz, J. Dy, and J.-W. van de Meent, editors, Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pages

93

https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.1145/3555041.3589682
https://doi.org/10.1145/3555041.3589682
https://doi.org/10.48550/arXiv.2303.06094
https://doi.org/10.48550/arXiv.2303.06094
https://pytorch.org/blog/torchserve-performance-tuning/
https://pytorch.org/blog/torchserve-performance-tuning/
https://istio.io/latest/docs/reference/config/networking/sidecar/
https://istio.io/latest/docs/reference/config/networking/sidecar/
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3159652.3159656
https://github.com/LaurentMazare/tch-rs
https://github.com/LaurentMazare/tch-rs
https://pytorch.org/serve/
https://www.youtube.com/watch?v=GSJFyoBiCXk
https://www.youtube.com/watch?v=GSJFyoBiCXk
https://www.vice.com/en/article/ai-generated-books-of-nonsense-are-all-over-amazons-bestseller-lists/
https://www.vice.com/en/article/ai-generated-books-of-nonsense-are-all-over-amazons-bestseller-lists/
https://github.com/rn5l/session-rec/blob/master/algorithms/knn/vsknn.py
https://github.com/rn5l/session-rec/blob/master/algorithms/knn/vsknn.py
https://github.com/epwalsh/batched-fn

6. Bibliography

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

6388-6421. PMLR, 25-27 Apr 2023. URL https://proceedings.mlr.press/v206/wang23e.
html. (Cited on pages 58, 60, 61, and 79.)

C.-M. Wong, F. Feng, W. Zhang, C.-M. Vong, H. Chen, Y. Zhang, P. He, H. Chen, K. Zhao, and
H. Chen. Improving conversational recommender system by pretraining billion-scale knowledge graph.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 2607-2612, 2021.
doi: 10.1109/ICDES1399.2021.00291. (Cited on pages 25 and 60.)

S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan. Session-based recommendation with graph
neural networks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and
Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, AAAT 19/IAAT’ 19/EAAT’ 19. AAAI Press, 2019.
ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.3301346. (Cited on pages 44 and 46.)

W. Wu, L. Flokas, E. Wu, and J. Wang. Complaint-driven training data debugging for query 2.0. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’20, page 1317-1334, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450367356. doi: 10.1145/3318464.3389696. URL https://doi.org/10.1145/3318464.
3389696. (Cited on page 60.)

X. Xie, F. Sun, X. Yang, Z. Yang, J. Gao, W. Ou, and B. Cui. Explore user neighborhood for real-time
e-commerce recommendation. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pages 2464-2475, 2021. doi: 10.1109/ICDE51399.2021.00279. (Cited on pages 25 and 60.)
C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou. Graph contextualized
self-attention network for session-based recommendation. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, IICAI’19, page 3940-3946. AAAI Press, 2019. ISBN
9780999241141. (Cited on pages 1, 44, 46, 61, and 78.)

H. Yin, Q. Wang, K. Zheng, Z. Li, J. Yang, and X. Zhou. Social influence-based group representation
learning for group recommendation. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 566577, 2019. doi: 10.1109/ICDE.2019.00057. (Cited on pages 25 and 60.)

F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He. A simple convolutional generative network
for next item recommendation. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, WSDM 19, page 582-590, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450359405. doi: 10.1145/3289600.3290975. (Cited on pages 1,
12,13, 17, and 25.)

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, page 2, USA, 2012. USENIX Association. (Cited on pages 13 and 15.)

Zalando. Extending the life of fashion, 2023. URL https://corporate.zalando.com/en/our-
impact/extending-1ife-fashion. (Cited on page 52.)

W. X. Zhao, Y. Hou, X. Pan, C. Yang, Z. Zhang, Z. Lin, J. Zhang, S. Bian, J. Tang, W. Sun, et al.
RecBole 2.0: Towards a more up-to-date recommendation library. In CIKM, pages 4722-4726, 2022.
(Cited on pages 44, 46, 48, 52, and 78.)

Y. Zheng, C. Gao, X. He, Y. Li, and D. Jin. Price-aware recommendation with graph convolutional
networks. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 133-144.
IEEE, 2020. (Cited on pages 25 and 60.)

C. Zhou, J. Ma, J. Zhang, J. Zhou, and H. Yang. Contrastive learning for debiased candidate generation
in large-scale recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, KDD 21, page 3985-3995, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467102.
(Cited on page 1.)

X. Zhou, D. Qin, X. Lu, L. Chen, and Y. Zhang. Online social media recommendation over streams.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 938-949, 2019. doi:
10.1109/ICDE.2019.00088. (Cited on pages 25 and 60.)

Z. Zolaktaf, R. Babanezhad, and R. Pottinger. A generic top-n recommendation framework for trading-
off accuracy, novelty, and coverage. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pages 149-160, 2018. doi: 10.1109/ICDE.2018.00023. (Cited on pages 25 and 60.)

94

https://proceedings.mlr.press/v206/wang23e.html
https://proceedings.mlr.press/v206/wang23e.html
https://doi.org/10.1145/3318464.3389696
https://doi.org/10.1145/3318464.3389696
https://corporate.zalando.com/en/our-impact/extending-life-fashion
https://corporate.zalando.com/en/our-impact/extending-life-fashion

Summary

This thesis provides a comprehensive exploration of scalable solutions for session-
based recommendation systems, tackling key challenges, which are: large product
catalogs, millions of users, sparse interaction data, and the debugging of large-scale
recommendation datasets. Conducted in collaboration with Bol, a European e-commerce
platform, this research bridges the gap between academic advancements and the practical
demands of industrial systems.

Chapter 2 focuses on designing and deploying algorithms and frameworks that
efficiently process billions of interactions with high efficiency and low latency. These
algorithms and frameworks are rigorously evaluated through both offline experiments
and real-world deployments.

In Chapter 3, the thesis introduces VMIS-kNN, an improved version of the state-
of-the-art VS-kNN algorithm. With a more efficient time complexity and small opti-
mizations such as a prebuilt index, VMIS-kNN enhances scalability and responsiveness,
enabling recommendation computations within milliseconds. Empirical evaluations
across six datasets and multiple programming language implementations demonstrate its
effectiveness. Additionally, the thesis presents Serenade, a production-ready, state-ful
recommendation system with high throughput and low latency. Serenade integrates
seamlessly into large-scale e-commerce platforms, significantly improving user engage-
ment business metrics.

Chapter 4 highlights the Etude framework, which provides a systematic approach
for benchmarking the inference performance of neural network-based session recom-
mendation models under various deployment scenarios.

Furthermore, in Chapter 5 introduces KMC-Shapley, a scalable method for esti-
mating Data Shapley Values in sequential kNN-based recommendation systems. This
technique enhances the debugging of large-scale recommendation datasets by combin-
ing algorithmic rigor with practical utility. The research underscores the importance of
balancing predictive performance, system efficiency, and ecological sustainability.

The findings confirm the effectiveness of nearest neighbor methods in specific e-
commerce contexts, the crucial impact of system latency on user acceptance, and the
value of data valuation techniques in maintaining the integrity of kNN-based recom-
mendation systems. The open-source tools and methodologies developed in this thesis
advance the state-of-the-art while offering practical insights for industry professionals.
By combining theoretical innovation with real-world applicability, this research makes
a valuable contribution to the field of session-based recommendation systems.

95

Samenvatting

Deze thesis biedt een grondige verkenning van schaalbare oplossingen voor sessiege-
baseerde aanbevelingssystemen en richt zich op belangrijke uitdagingen, namelijk grote
productcatalogi, miljoenen gebruikers, schaarse interactiedata en het debuggen van
grootschalige aanbevelingsdatasets. Het onderzoek, uitgevoerd in samenwerking met
Bol, een Europees e-commerceplatform, slaat een brug tussen academische vooruitgang
en industriéle omgevingen.

Hoofdstuk 2 richt zich op de ontwikkeling en implementatie van algoritmen en
frameworks die efficiént miljarden interacties kunnen verwerken met hoge doorvoer-
snelheden en weinig vertraging. De effectiviteit van deze algoritmen en frameworks
wordt aangetoond via zowel offline evaluaties als toepassingen in de praktijk.

In Hoofdstuk 3 wordt VMIS-KNN geintroduceerd, een verbeterde versie van het
bestaande VS-kNN-algoritme. Door gebruik te maken van een betere tijd complexiteit
en kleine optimalisaties zoals een vooraf opgebouwde index, biedt VMIS-kNN betere
schaalbaarheid en snellere aanbevelingen binnen milliseconden. De voordelen worden
empirisch aangetoond op zes datasets en in verschillende programmeertalen. Daarnaast
introduceert dit hoofdstuk Serenade, een productierijp, stateful aanbevelingssysteem
met hoge doorvoersnelheid en lage latency, dat succesvol integreert in grootschalige
e-commerceplatforms en een meetbare verbetering laat zien in gebruikersacceptatie en
bedrijfsresultaten van Bol.

Hoofdstuk 4, introduceert het Etude-framework, dat een systematische aanpak biedt
voor het benchmarken van de prestaties van neurale netwerkmodellen voor sessie-
gebaseerde aanbevelingen in diverse deployementscenario’s.

In Hoofdstuk 5 wordt KMC-Shapley gepresenteerd, een schaalbare methode voor
het schatten van Data Shapley Values binnen sequenti€le kNN-gebaseerde aanbevel-
ingssystemen. Dit draagt bij aan het debuggen van grootschalige aanbevelingsdatasets
door een combinatie van theoretische precisie en praktische toepasbaarheid. Het onder-
zoek benadrukt daarbij het belang van een evenwicht tussen voorspellende prestaties,
systeemefficiéntie en ecologische duurzaamheid.

De resultaten van deze thesis bevestigen de effectiviteit van nearest neighbor-
methoden in specifieke e-commercecontexten, benadrukken het belang van systeem-
latentie voor gebruikersacceptatie en laten zien hoe datavaluatie kan bijdragen aan de
betrouwbaarheid van kNN-gebaseerde aanbevelingssystemen. De ontwikkelde open-
source tools en methodologiegn leveren niet alleen een waardevolle bijdrage aan het
vakgebied, maar bieden ook bruikbare inzichten voor professionals in de praktijk.

97

	Acknowledgements
	Introduction
	Research Outline and Questions
	Main Contributions
	Thesis Overview
	Origins

	Learnings from a Retail Recommendation System
	Introduction
	Related Work
	System Architecture
	Overview
	Recommendation Approach
	Distributed Model Training
	Online Serving

	Neural Networks versus Nearest Neighbor Methods
	Data & Algorithms

	The Impact of Serving Latency
	Experimental Evaluation

	Learnings & Future Work

	Serenade – Low-Latency Session-Based Recommendation in e-Commerce at Scale
	Introduction
	Related Work
	Background
	Vector-Multiplication-Indexed-Session-kNN (VMIS-kNN)
	Serenade
	Design Considerations
	Implementation

	Experimental Evaluation
	VMIS-kNN
	Serenade

	Learnings & Conclusion

	Evaluating the Inference Latency of Session-Based Recommendation
	Introduction
	The Etude Benchmarking Framework
	Experimental Study
	Validation of Design Choices
	Micro-Benchmark
	End-to-End Benchmark

	Conclusion

	Scalable Debugging of Recommendation Data in e-Commerce
	Introduction
	Related Work
	Background
	Data Importance
	Sequential Recommendation

	Illoominate
	KMC-Shapley
	Scalability Issues
	Data and Model Characteristics in KNN-SR
	KMC-Shapley Algorithm

	Evaluation
	Efficiency
	Scalability
	Impact of Data Removal

	Applications
	Identifying Outliers and Corrupted Data
	Increasing the Sustainability of Recommendations via Data Pruning
	High-Value Data and High-Level Insights
	Transferability to Neural SR Methods

	Conclusion
	Appendix
	Recommendation Algorithms
	Efficient LOO Computation

	Conclusion
	Summary of Findings
	Future Work

	Bibliography
	Summary
	Samenvatting

